Multi Directional Piezoelectric Plate Energy Harvesters Designed By Topology Optimization Algorithm

Abbas Homayouni-Amlashi¹, Abdenbi Mohand-Ousaïd¹ and Micky Rakotondrabe², member, IEEE

Abstract—In this paper, piezoelectric plate energy harvesters are designed by using topology optimization algorithm to harvest the excitation from different directions. The goal is to minimize the volume and weight of the whole structure so the harvesters can be used in small scale applications. To this aim, the profile of polarization is optimized by the topology optimization to overcome charge cancellation which is the main challenge in random direction excitation. Two optimized designs with uniform and non-uniform polarization profiles are obtained. Separated electrodes in the surfaces of the optimized design with non-uniform polarization are used to simulate the polarization profile. Numerical simulations by COMSOL multi-physics software show that the optimized design with separated electrodes can provide 3 times higher voltage and power than those obtained with non-optimized piezoelectric plate. Experimental investigation demonstrated that the same design with separated electrodes can have 2.17 and 1.93 times higher voltage than the full plate for out of plane and in-plane forces respectively.

Index Terms—Product Design, Development and Prototyping, Piezoelectric Energy Harvesting, Topology Optimization

I. INTRODUCTION

ENERgy harvesters based on mechanical vibration are well known and their applications are well established [1]. By converting vibration energy to electrical energy, such systems offer a potential alternative to batteries in low-power-wireless devices such as wearable clothes [2], wireless sensors [3], GPS tracking systems [4] and small scale robots [5]. Piezoelectric effect is one of the main principles that allows such mechanical to electrical conversion, in particular at small scales [6], [7]. Among the different types of configurations for Piezoelectric Energy Harvesters (PEHs), cantilevered structures are widely used. In fact for a given input force, they provide the highest average strain energy [8], are easier to fabricate and appropriate for small scales applications. As such, for improving the harvested energy by cantilever PEHs, various methods have been proposed: parametric optimization [9], layers number optimization [10]. It is worth to note that interval techniques [11] are also potential parametric optimization for piezoelectric structures as demonstrated in [12].

In addition to the above optimization of PEHs, another promising optimization method that attracted the attention of researchers in order to improve their performances is the so-called Topology Optimization (TO). TO methodology is about integrating the Finite Element Method (FEM) with the optimization method [13]. The goal is to distribute in an optimal way the material within the design domain in order to have the best structural performance. One of the famous approaches of TO is the density approach [14] or more particularly the SIMP approach [15] which represents the Solid Isotropic Material with Penalization. In this approach, the optimization algorithm lets the elements in the design domain have an artificial density between zero and one multiplied by the material density. Due to the triumph of this approach, the implementation MATLAB code is also published with 3D FEM modelling [16]. This methodology was interesting enough to be applied to piezoelectric structures. As such, after taking the first step of extending the SIMP scheme for the non-isotropic material [17], the application of TO to piezoelectric materials took different directions including the optimization of actuators [18], sensors [19] and energy harvesters [20], [21]. The application of TO to PEHs started by defining an energy-based objective function and sensitivity analysis [20]. Thereafter, other works optimized the PEHs for dynamic forces [22] while recent works are considering the coupled electrical circuit in the optimization algorithm [23]. However, most of the research which integrated the TO to PEHs are theoretical and experimental investigations are difficult to be found in this field to the knowledge of authors. Moreover, the current status of research in PEHs area is that these latter configurations are mostly one degree of freedom, i.e. they only harvest the energy from one direction of excitation. The general approach for multi directional energy harvesters which is proposed recently is to attach the piezoelectric material to a passive structure which can vibrate in multi direction [24]. In this case however, the obtained structure will have higher volume and weight. As a summary, multi directional PEHs are extremely challenging for small scales applications if one should consider dimensions constrain, fabrication difficulty and possibly cost issues.

The aim of this paper is to exploit TO methodology in
order to optimize PEHs structures that can harvest the energy from different directions of vibration excitation where there is a constraint on the weight and volume. The possible application includes miniaturized wireless sensors and tracking devices with lowest possible amount of cost and complexity of fabrication. The initial design domain is a square piezoelectric plate. A mechanical boundary condition is suggested instead of conventional cantilever beam that can make the harvested energy from different directions as much symmetric as possible. The proposed objective function can reduce the numerical instabilities and the effects of choosing different optimization parameters on the final design. Furthermore, to avoid the numerical instabilities due to huge scale difference between piezoelectric matrices a normalization is suggested as well.

Two different optimized designs are obtained by considering two different possible of applied force configuration. The performance of these two optimized designs under different excitation forces is investigated numerically via finite element (FE) method by COMSOL Multiphysics (COMSOL, Inc., Burlington, USA) simulation and then experimentally. The experimented optimized structures were fabricated with piezoelectric bi-morph plates and laser cutting machine. The excitation during the experimental tests was done by attaching a magnet at the extremity of each PEH and applying a magnetic field to them thanks to a controlled electromagnet. Numerical and experimental results demonstrated two times better performance from the optimized design with separated electrodes in comparison with the simple full plate design. Moreover, the obtained designs here are scalable i.e. the suggested boundary condition, the obtained optimized designs, the proposed method to avoid the charge cancellation and the fabrication process can be easily implemented in small and micro dimension applications.

II. PIEZOELECTRIC FINITE ELEMENT MODELLING

In Fig. 1(a) the schematic view of a bi-morph piezoelectric plate (PZTP) with defined clamped boundary condition, attached mass and forces in 3 directions are illustrated. The bi-morph plate consists of 3 electrodes: on top, middle and bottom surfaces of the plate. The polarization axes for the piezoelectric materials is parallel to the z direction of the coordinate system while the direction will be later defined by optimization method. This following initial design is proposed here to harvest the vibrational energy that comes from different directions. The FE modelling of the system is started by discretizing the design domain by finite number of 3D hexahedron elements as shown in Fig. 1(b). Each element has 8 nodes and each node has 3 mechanical degrees of freedom as displacement [25] and one electrical degree of freedom as potential [26]. By using enough number of 3D elements, the FEM model will be accurate. Starting from piezoelectric constitutive equations and by (i) neglecting the thermal coupling and damping effects, (ii) performing the mathematical procedure given in [26], the following finite element equation can be achieved

\[
\begin{bmatrix}
 M & 0 \\ 0 & M
\end{bmatrix}
\begin{bmatrix}
 \ddot{U} \\ \dot{\Phi}
\end{bmatrix}
+ \begin{bmatrix}
 K_{uu} & K_{u}\phi \\ K_{\phi}u & -K_{\phi}\phi
\end{bmatrix}
\begin{bmatrix}
 U \\ \Phi
\end{bmatrix}
= \begin{bmatrix}
 F \\ Q
\end{bmatrix}
\] (1)

where \(U \) and \(\phi \) are the vectors of the mechanical displacement and electric potential respectively. \(F \) and \(Q \) are the applied external mechanical force and electrical charge. \(M, K_{uu}, K_{u}\phi, K_{\phi}u, K_{\phi}\phi \) are the global mass matrix, mechanical stiffness matrix, piezoelectric coupling matrix and piezoelectric permittivity matrix respectively. These matrices are formed by assembling the elemental matrices [22].

For the energy harvesting case, first, the applied external charge (\(Q \)) in (1) is considered to be zero. Then, by considering a harmonic external force and assuming a linear electromechanical system, the force and the response of the system will be modelled in the following form

\[
F = F_0 e^{i\Omega t}, U = U_0 e^{i\Omega t} \] (2)

where \(\Omega \) is the excitation frequency. As such, the equilibrium equation in (1) can be rewritten as

\[
\begin{bmatrix}
 K_{uu} - M \Omega^2 & K_{u}\phi \\ K_{\phi}u & -K_{\phi}\phi
\end{bmatrix}
\begin{bmatrix}
 U \\ \Phi
\end{bmatrix}
= \begin{bmatrix}
 F \\ 0
\end{bmatrix}
\] (3)

The new equation in (3) can’t be solved due to singularity. General approach to deal with this issue is to apply mechanical and electrical boundary conditions. However, in addition to singularity, the huge scale difference of the internal matrices including stiffness matrix and permittivity matrix brings numerical instability in computational procedures. Therefore, here it is proposed to perform a normalization which starts from the elemental matrices as follows

\[
\begin{align*}
\tilde{K}_{uu} &= \frac{1}{k_0} \sum_{i=1}^{NE} k_{uu}, \tilde{K}_{u}\phi &= \frac{1}{\alpha_0} \sum_{i=1}^{NE} k_{u}\phi \\
\tilde{K}_{\phi}u &= \frac{1}{\beta_0} \sum_{i=1}^{NE} k_{\phi}u, \tilde{M} &= \frac{1}{m_0} \sum_{i=1}^{NE} m + [M_{mass}]
\end{align*}
\] (4)

Fig. 1. Piezoelectric plate energy harvester modelling. a) Schematic modelling of piezoelectric plate under application of 3 directional force b) finite element modelling in MATLAB environment.
where \(m, k_{uu}, k_{u\phi}, k_{\phi\phi} \) are the elemental matrices and global mass matrices are formed by assembling these elemental matrices while factorizing the biggest value of each matrix elements which are \(k_0, \alpha_0, \beta_0 \) and \(m_0 \). (\(\tilde{\cdot} \)) shows the normalized matrices. To model the attached mass, its equivalent mass is modelled as a lumped mass on the desired elements. This assumption is accurate since the mass of the tip attachment is highly decreased. To apply the mechanical boundary condition, the clamped part of the piezoelectric plate in Fig. 1(a) is modelled by forcing zero displacement to the nodes that the solution of the system will remain the same before and after applying the normalization. With eliminating the weighting factor is considered as objective function. Therefore, the optimization problem can be defined as

\[
\text{Minimize } J = w_j \Pi^S - (1 - w_j) \Pi^E
\]

Subject to \(V(x) = \sum_{i=1}^{NE} x_i v_i \leq V, \)
\(0 \leq x_i \leq 1, 0 \leq P_i \leq 1 \) (10)

In which, \(J \) is the objective function, \(w_j \) is the weighting factor, \(x_i \) and \(P_i \) are design variables that present the density ratio and polarization of each element respectively. \(V \) is the target volume which is a fraction of the overall volume of the design domain while \(v_i \) is the volume of each element and \(NE \) is the total number of elements. \(\Pi^S \) and \(\Pi^E \) are mechanical and electrical energies respectively which are defined in the following form [22], [20]

\[
\Pi^S = \left(\frac{1}{2} \right) \tilde{U}^T \tilde{K}_{uu} \tilde{U}, \quad \Pi^E = \left(\frac{1}{2} \right) V_p^T \tilde{K}_{\phi\phi} V_p
\] (11)

In (10), \(w_j \) determines the importance of each energy during the optimization. It is obvious that if \(w_j = 1 \) then the optimization will be the minimization of the mean compliance [16], [13]. With reducing the \(w_j \) the optimization will shift towards maximization of the electrical energy. But, it should be noted that very low values for the \(w_j \) may lead to mechanically unstable results.

B. Sensitivity Analysis

Gradient based optimization requires the sensitivity of objective function with respect to each design variable. Here, the design variables are density ratio and polarization. For density, the derivative of objective functions is calculated in the following form

\[
\frac{\partial J}{\partial x_i} = w_j \frac{\partial \Pi^S}{\partial x_i} - (1 - w_j) \frac{\partial \Pi^E}{\partial x_i}
\] (12)

Now, by substituting (11) to (12) the similar procedure explained in ref [20] can be followed to calculate the sensitivities.
However, the normalization factor (γ) is introduced to the formulation here

\[
\frac{\partial \Omega}{\partial x_i} = \frac{1}{2} \tilde{u}_i^T + \lambda_{i,1} \frac{\partial (\tilde{k}_{uu} - n \tilde{m}_i \tilde{Q}_u)}{\partial x_i} \tilde{u}_i + \\
\lambda_{1,2} \frac{\partial \tilde{k}_{u\phi}^+ \phi_i}{\partial x_i} \phi_i + \mu_{1,2} \frac{\partial \tilde{k}_{\phi u}^+ \tilde{u}_i}{\partial x_i} \tilde{u}_i \tag{13}
\]

\[
\frac{\partial \Omega}{\partial x_i} = \frac{1}{2} \tilde{u}_i^T + \lambda_{i,1} \frac{\partial (\tilde{k}_{uu} - n \tilde{m}_i \tilde{Q}_u)}{\partial x_i} \tilde{u}_i + \\
\lambda_{1,2} \frac{\partial \tilde{k}_{u\phi}^+ \phi_i}{\partial x_i} \phi_i + \mu_{1,2} \frac{\partial \tilde{k}_{\phi u}^+ \tilde{u}_i}{\partial x_i} \tilde{u}_i \tag{14}
\]

In (13) and (14) which are the sensitivity of mechanical and electrical energy respectively, μ and λ are the elemental adjoint vectors to avoid taking the derivative of u and ϕ with respect to design variables. These adjoint vectors are calculated by the following global coupled system

\[
\begin{bmatrix}
\frac{\partial K_{uu}}{\partial x_i} & \frac{\partial K_{u\phi}}{\partial x_i} \\
-\frac{\partial K_{\phi u}}{\partial x_i} & -\frac{\partial K_{\phi \phi}}{\partial x_i}
\end{bmatrix}
\begin{bmatrix}
\Lambda_1 \\
\Lambda_2
\end{bmatrix} =
\begin{bmatrix}
-\frac{\partial \Omega}{\partial x_i} U \\
0
\end{bmatrix}
\]

\[
\begin{bmatrix}
\frac{\partial K_{uu}}{\partial x_i} & \frac{\partial K_{u\phi}}{\partial x_i} \\
-\frac{\partial K_{\phi u}}{\partial x_i} & -\frac{\partial K_{\phi \phi}}{\partial x_i}
\end{bmatrix}
\begin{bmatrix}
\Lambda_1 \\
\Lambda_2
\end{bmatrix} =
\begin{bmatrix}
0 \\
-\frac{\partial \Omega}{\partial x_i} V_P
\end{bmatrix}
\]

where Λ and Υ are the global adjoint vectors which need to be disassembled to form the elemental adjoint vectors

\[
[\Lambda_1]_{bc} = \Lambda_1, [\Lambda_2]_{bc} = \Lambda_2, [\mu_1] = BT_1, [\mu_2] = BT_2 \tag{17}
\]

It is worthwhile to mention that, solving equations (8), (15) and (16) with applied equipotential condition reduces the size of the system significantly which boosts the speed of calculations in each iteration of optimization. To calculate the derivatives of the stiffness matrix, piezoelectric coupling matrix and piezoelectric permittivity, the SIMP scheme for isotropic material can be extended to the piezoelectric material which will be discussed next.

C. Extension of SIMP Scheme to Piezoelectric Material

In case of SIMP scheme, the Young modulus of elasticity of each element equals to the multiplication of the element density ratio (x) and the Young modulus of the isotropic material. [13]. However, for the non-isotropic piezoelectric material, the density ratio will be multiplied to the whole stiffness and piezoelectric matrices. Therefore, the extension of SIMP to the piezoelectric materials can be written as [22], [18]

\[
\tilde{k}_{uu}(x) = x^{p_{uu}} \tilde{k}_{uu}
\]

\[
\tilde{k}_{u\phi}(x, P) = x^{p_{u\phi}} (2P - 1)^{p_p} \tilde{k}_{u\phi}
\]

\[
\tilde{m}(x) = x \tilde{m}
\]

where, p_{uu}, $p_{u\phi}$ and p_{ϕ} are the stiffness, coupling and permittivity penalization coefficients. Coupling Matrix $\tilde{k}_{u\phi}(x, P)$ is a function of density (x) and polarization (P) which is penalized by factor p_p. This methodology which introduces the polarization as a variable in the optimization is known as "piezoelectric material with penalization and polarization" (PEMAP-P) [18] and defines the direction of polarization for each element during optimization. Different values can be considered for penalization factors. It is already known that the stiffness penalization factor p_{uu} should be more than 3 [13]. For other penalization coefficients, Noh et al. [22] considered different values for a cantilever under bending force and those results cannot be extended to the other design configuration like the one proposed in this paper. However, with objective function defined in (10), the effect of penalization factors on the optimization is minimized. The suggestion here is to use values greater than 3 for p_{uu} and p_{ϕ} and value of 1 for p_p since no penalization is needed for polarization. In fact, the values of p_{uu} and p_{ϕ} do not have any effect on the final topology. But, they steer the elements of the final topology to zero and one density (black and white design [13]) more effectively. Now, with the help of (18) it is possible to take the derivative of the piezoelectric matrices with respect to density ratio

\[
\frac{\partial \tilde{k}_{uu}(x)}{\partial x} = p_{uu} x^{p_{uu}-1} \tilde{k}_{uu}
\]

\[
\frac{\partial \tilde{k}_{u\phi}(x, P)}{\partial x} = p_{u\phi} x^{p_{u\phi}-1} (2P - 1)^{p_p} \tilde{k}_{u\phi}
\]

\[
\frac{\partial \tilde{m}(x)}{\partial x} = \tilde{m}
\]

By Substituting (19) in (13) and (14), the sensitivity of objective function with respect to density ratio can be calculated. In addition to what is mentioned in refs [20], [22], by employing the PEMAP-P [18], polarization is also a variable of optimization. As such, here the sensitivity of objective function with respect to polarization is calculated as well

\[
\frac{\partial \Omega}{\partial P_i} = \lambda_{1,1} \frac{\partial \tilde{k}_{uu}}{\partial P_i} \phi_i + \mu_{1,1} \frac{\partial \tilde{k}_{u\phi}}{\partial P_i} \tilde{u}_i \tag{20}
\]

\[
\frac{\partial \Omega}{\partial P_i} = \lambda_{1,2} \frac{\partial \tilde{k}_{u\phi}}{\partial P_i} \phi_i + \mu_{1,2} \frac{\partial \tilde{k}_{\phi u}}{\partial P_i} \tilde{u}_i \tag{21}
\]

While the adjoint vectors μ and λ are already calculated through the coupled system defined in (15) and (16) and just the derivative of the piezoelectric coupling matrix with respect to polarization is needed. This derivative is given as follows

\[
\frac{\partial \tilde{k}_{u\phi}(x, P)}{\partial P} = 2p_p(2P - 1)^{p_p-1} x^{p_{u\phi}} \tilde{k}_{u\phi} \tag{22}
\]

D. Updating Optimization Variables

After defining the optimization problem and performing the sensitivity analysis, Method of Moving Asymptotes (MMA) [28] is utilized to update the optimization variables while respecting the volume constraint. Here, the optimization variables are density ratio and polarization.

After updating the densities by MMA, density filter is applied to avoid the numerical instabilities like mesh-dependency and checkerboard patterns and the theoretical concept behind is explained in [13]. Here, to apply the density filter the same lines of codes proposed by Liu et al. [16] are employed.
E. Piezoelectric Topology Optimization Algorithm

The topology optimization algorithm for piezoelectric material can be written in the following form:

Initial guess for the x and P;

while $Density\ Change\ >\ 0.01 \&\ loop\ number\ <\ Maximum\ loop$ do

- Computing \tilde{K}_{uu}, $\tilde{K}_{u\phi}$, $\tilde{K}_{\phi\phi}$, \tilde{M};
- Applying mechanical and electrical boundary conditions;
- Calculation of system responses U and V_P;
- Calculation of objective function J;
- Sensitivity analysis for x and P;
- Updating x and p using MMA;
- Application of density filter;

end

Post processing

In post processing step, the density ratios of the obtained design are firstly steered to 0 and 1. Then the coordinates of the boundaries are used to transfer the design to the CAD software. Here, the post processing method mentioned in [29] which consists of two steps of Gaussian filter and thresholding is employed.

IV. NUMERICAL RESULTS AND SIMULATION

A. MATLAB FEM Topology Optimization Results

In this section the piezoelectric plate illustrated in Fig.1-(b) is optimized by the optimization algorithm regarding the force and boundary conditions. The specifications of the PZTP and optimization parameters are reported in table I. Here, the geometry of the design domain is chosen based on the available fabrication instruments. In fact, increasing or decreasing the scale of the design domain will not change the result of optimization. The excitation frequency is considered to be 20 Hz which is in the range of real applications like vehicle vibration and animal GPS tracking devices. The sensitivity of the objective function respect to applied frequency is low and the applied frequency should be changed considerably to have small effect on the final layout of the obtained results.

The results of the TO in MATLAB for two cases are shown in Fig. 2-(a) and (c) including the elements which have density ratio more than 0.9 while the red color of the elements shows the positive polarization in direction of z coordinate and the blue color shows opposite polarization.

The optimized design (1) is the result of optimization for forces in 3 directions and optimized design (2) is the result of optimization when there are just in-plane forces in directions of x and y and the force in direction of z is completely neglected. Since the produced electrical energy due to out of plane force i.e. z direction is highly superior to the in-plane forces, the optimization algorithm considers constant polarization in each layer when there is out of plane force, as can be seen in 2-(a). The problem of this polarization profile is that in case of planar force, there will be charge cancellation due to compression and tension in different parts of the layer. To remedy this, in the second approach, the goal is to just optimize the design for in-plane forces while it is known that the energy of out of plane forces are higher in several order. As it is obvious from Fig. 2-(c), the polarization profile in the second row design is not constant and direction of the polarization in different parts of the layer is changed to avoid charge cancellation. For the realization of this polarization profile, the top and bottom electrode as it is shown in Fig. 2-(d) are divided to two sections to simulate the polarization profile. As such, the design has two electrodes on top, two electrodes on bottom and one electrode in the middle. For practical reasons, this division of electrodes is not completely following the polarization profile. In fact, exact implementation of polarization profile makes the realization extremely complicated in terms of fabrication and electrical circuit.

The changes of mechanical and electrical power, density change and volume fraction during the TO iterations are illustrated in Fig. 3. It is obvious that mechanical and electrical power converge very smoothly without numerical instabilities. The optimization is stopped manually after 120 iterations since no significant change in powers or obtained design could be

![Fig. 2. Optimized designs obtained by topology optimization. (a) and (c): MATLAB FEM, (b) and (d): COMSOL implementation](image1)

![Fig. 3. MATLAB topology optimization implementation](image2)

Table I

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PZTP Type</td>
<td>PZT P5T SHH4</td>
<td>Tip Magnet Weight</td>
<td>50 (milligram)</td>
</tr>
<tr>
<td>PZTP density</td>
<td>7800 (kg/m³)</td>
<td>p_{uu}</td>
<td>3</td>
</tr>
<tr>
<td>PZTP Thickness</td>
<td>0.25 mm</td>
<td>$p_{u\phi}$</td>
<td>6</td>
</tr>
<tr>
<td>PZTP Length</td>
<td>19.1 (mm)</td>
<td>$p_{\phi\phi}$</td>
<td>6</td>
</tr>
<tr>
<td>PZTP Width</td>
<td>19.1 (mm)</td>
<td>p_f</td>
<td>1</td>
</tr>
<tr>
<td>FEM Number of Elements</td>
<td>100 x 100 x 2</td>
<td>Excitation Frequency</td>
<td>20 HZ</td>
</tr>
<tr>
<td>Clamping Fraction</td>
<td>0.3</td>
<td>Density Filter Radius</td>
<td>1.5</td>
</tr>
<tr>
<td>Volume Fraction</td>
<td>0.4</td>
<td>u_l</td>
<td>0.02</td>
</tr>
</tbody>
</table>
The reason that electrical and mechanical power for optimized design (1) is several order higher than the optimized design (2) is that for optimized design (2), there is no force in the z direction. Such force is a bending force and produces a large strain and significant mechanical and electrical energy.

B. COMSOL Simulation

After transferring the design to COMSOL multi-physics software, their responses due to a force in different directions are investigated. Mechanical boundary condition and electrodes are defined respectively. For each electrode an electrical circuit is modelled separately in the software to measure the voltage, the electrical and the mechanical power obtained from the design due to a harmonic force.

A general force in the 3D space with random directions can be decomposed to its perpendicular components along X, Y and Z axes. Since two of these components are parallel to X and Y axes, the performance of the optimized designs depends on how they can avoid in-plane charge cancellation. Therefore, in Fig.4, it is considered that an in-plane force is applied to the designs in different directions. Then the voltage, electric power, mechanical power and power ratio are reported to compare the performance of the designs. In Fig.4-(a), the representation of the applied force is shown. In fact, the amplitude of the force is constant. Only the angle α is changing from 0 to 2π with the steps of $\pi/12$. So Fig.4-(d), it is obvious that the amplitude of force is constant and just the angle of application force is changing while each point on the plot shows the steps of angle changes.

Now, in Fig.4-(b), the voltages related to all points are calculated as well. As such, the direction of each point to the center shows the direction of the force. But, the distance of each point to the center shows the voltage. In the remaining parts of the figure, i.e. mechanical power, electric power and power ratio, the direction of each point to the center shows the direction of the force but the distance shows the amplitude of the parameter. By inspecting the plots it is revealed that optimized designs (1) and (2) produce around up to 2 and 3 times higher output voltage and power in comparison with full plate respectively. The power ratio which is the ratio of the electrical power to mechanical power shows that the best power ratio still belongs to optimized design (2) while the optimized design (1) has lower electrical to mechanical power ratio. The reason for low power ratio for optimized design (1) due to in-plane force is the charge cancellation resulted by the uniform electrodes.

The maximum of piezoelectric voltage and power depend on amplitude and distribution of mechanical strain energy. For different direction of excitation force, there can be stress concentration nearby the clamping. This leads to the existence of a jump in the mechanical energy stored in the design while the distribution of strain is non-uniform. For this reason, the peaks of mechanical power and electrical power are not the same in Fig. 4.

V. **EXPERIMENTAL INVESTIGATION**

A. Fabrication

The fabrication process of designs started by gluing two piezoelectric plates with a dimensions of 75x75x0.254 mm...
Fig. 5. COMSOL FEM results to investigate the performance of designs under application of 3D force

(Commercial PZT - lead zirconate titanate - piezoelectric material PSI-5H4E from Piezo Systems Inc). For that, a mixture of silver glue and epoxy is used. To solidify the glue, the resulted bi-layer plate is heated inside an oven at 100 degree Celsius during one hour and then cooled down. After that, a laser machine (Siro Lasertec GmbH, Pforzheim, Germany) is used to cut each design following its CAD model. The obtained prototypes in Fig.6-(b) are then connected to wires using the same gluing process mentioned previously. Finally, a small magnet is attached to the tip of each prototype. Such magnets are useful to generate a mechanical vibration when excited by an electromagnetic. It is worth noting that a rectangle domain is added on each obtained design in order to clamp the prototypes on the experimental bench support.

B. Experimental Bench

As it is shown in Fig. 6-(a), the experimental setup consists of a signal generator to produce sine voltage which is connected to an electromagnetic device that produces magnetic force to attract or pull the magnet attached at the tip of the designs. The design is clamped by a 3D printed support to completely simulate the clamped part in the modelling and COMSOL. The support itself is attached on a 3 degrees of freedom micro positioner through which it is possible to precisely determine the distance of the design to the electromagnetic excitation device. The whole setup is placed on an anti-vibration table to avoid the ambient vibration that may excite the system. Finally, an oscilloscope with 4 inputs is used to measure the voltage produced by each prototype.

C. Experimental Results

It should be mentioned that the full plate and design (1) have 3 electrodes while design (2) has 5 electrodes. For all designs the middle electrode is the ground electrode. In this case, the voltage of each electrode in each design is measured separately and the final reported voltage is the summation of these voltages.

In the first investigation, the magnet is put on the designs as it is shown in Fig. 6-(b). With this direction of the magnet, the force is always in the z direction or in other words, the excitation is a bending force. The sine voltage from the signal generator is set to have 10 volts amplitude and 20Hz frequency. With the help of micro positioner the design is put close to the electromagnetic device and the distance is maintained for each design to guarantee the same experimental conditions. The obtained voltage for each design can be seen in Fig. 7-(a). The improvement of optimized design (1) and (2) with respect to full plate design is 1.81 and 2.17 respectively.

In the second experiment, direction of the magnet is changed based on Fig. 6-(c). With this direction, an in-plane excitation force is imposed. The obtained voltage for this new configuration is illustrated in Fig. 7-(b). For this case, the improvement of optimized design (1) and (2) with respect to full plate design is 1.005 and 1.93 respectively.
D. Discussion

The improvement of the optimized design’s electrical output with respect to the full plate design in experimental setup is less than the numerical results. This can be due to laser cutting procedure which can degrade the performance of the piezoelectric material. Laser heats up the design on the edges and the material in vicinity of the edge can pass the curie temperature and act like a passive material after. This phenomenon is more severe for optimized designs which have more edges and thin parts in comparison with full plate. To overcome this problem, femtosecond lasers with higher power and less heat or diamond cutting process can be used. The other reason can be due to the neglected damping.

The COMSOL simulation results for perfectly separated electrodes based on the polarization profile shows maximum of 10 percent improvement over the current electrode placement. However, in this case more wiring is needed and it will make the electrical circuit behind more complicated and it can even increase the overall weight and volume of the design.

To improve the reliability and durability of the piezoelectric energy harvesters in the real applications, maximum applied force or displacement can be restricted by solid frames or mechanical stoppers.

Final point is that just one excitation frequency (20 Hz) is considered in the optimization. However, by increasing the excitation frequency, before reaching to vicinity of the fundamental natural frequency the results of optimization do not change.

VI. Conclusion

The structure of a piezoelectric plate is optimized by topology optimization algorithm. By relaxing the optimization procedure from numerical instabilities, polarization optimization is also augmented to the modelling and a fabrication process with its inherent challenges is proposed to fabricate the optimized designs. By eliminating the charge cancellation within each layer which was the major goal, improvement of the optimized designs over conventional full plate in harvesting the energy from random direction of excitation force is demonstrated by numerical simulation and experimental investigation. Future works in this field would consider the tuning of the resonance frequency for multiple directions.

ACKNOWLEDGMENT

Authors would like to thank Dr. Joel Agnus and Eng. Patrick Rougeot from FEMTO-ST institute for their insightful advise and help during the fabrication process.

REFERENCES