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Introduction 
 

The need of high performances micro/nano robots and microrobotic cells increases rapidly. 
These new technologies can be used for applications such as micromanipulation (artificial 
components, biological objects), micro-assembly (MEMS, MOEMS, NEMS), material and 
surface force characterization.  At the micro/nano scales, sensing is a key issue to control 
systems and to understand physical phenomena. Numerous sensors with suitable resolution and 
range are necessarily required. 
 
Positioning accuracy and resolution have to be in the submicrometer range while those 
concerning force are in the micro-nano Newton range. Moreover, some applications require 
high dynamic performances and then high bandwidth sensors, for instance the automation of 
piezoelectric based micromanipulation robots. On the one hand, sensors that guarantee these 
performances are bulky and expensive (interferometers, scanning electron microscopes, 
cameras, laser sensors). Furthermore, most of these sensors generally enable only one or 2D 
measurements. On the other hand, sensors that are compact and convenient for packaging 
(strain gage, piezoceramic sensor, etc.) are very fragile and have very limited performance and 
robustness.  
 
To overcome these limitations, several approaches can be used: observation/estimation 
techniques which require less sensors or indirect ones, development of a new generation of 
sensors thanks to recent and fast progresses of microfabrication techniques and sensors 
technologies. Self-sensing methods using active materials also currently know fast 
development. The objective of this workshop is to present recent results on these topics. 
 
The main objectives of this workshop is to provide an overview of the recent measurement 
systems and signal estimation techniques performed for robots dedicated to act in the 
micro/nano world. The information concerned in this workshop is mainly force and position. At 
these scales, force and position signal are commonly of very small amplitude and exhibit a 
small signal/noise ratio. Nevertheless, the integration of sensors with suitable performances 
(high bandwidth, very high accuracy and convenient size, integration ability) remains highly 
challenging. In fact, it appears that the lack of such sensors is the main limitation to 
successfully perform the control of robots in the micro/nano world and to push back the limits 
of automation, as for example required in rapid and precise microassembly. These last years, 
the technological obstacles have led researchers to the design of a new generation of integrated 
sensors (Silicon/PZT, etc.), self-sensing methods in active materials and advanced signal 
estimation coming from control theory. 

Cédric Clévy, 
Micky Rakotondrabe, 

Nicolas Chaillet. 
  

Automatic Control and Micro-Mechatronic Systems Department (AS2M),  
FEMTO-st Institute,  
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Observer Techniques Applied to the Control of Piezoelectric
Microactuators

Micky Rakotondrabe, Member, IEEE, Cédric Clévy, Member, IEEE,
Ioan Alexandru Ivan, Member, IEEE, and Nicolas Chaillet, Member, IEEE,

Abstract—We present here the use of sensors, ob-
servers and self-sensing techniques to control piezo-
electric actuators, particularly piezocantielevers.

First, the feedback control with full measurements
(all variables are measured) is presented. Because of
the lack of convenient sensors for the microworld, non-
full measurements combined with observer techniques
is proposed. Finally, the self-sensing principle, where
the actuator is at the same time sensor, is applied and
used for the feedback.

I. Introduction

The need of high performances micro/nano robots
and systems increases rapidly. These new technologies
can be used for applications such as micromanipula-
tion (of artificial components and biological objects),
microassembly (of MEMS, MOEMS, NEMS), material
and surface force characterization, biological analysis,
etc. At the micro/nano scales, sensing is a key issue to
control systems and to understand physical phenomena.
Numerous sensors with suitable resolution and range are
necessarily required.

This paper give a survey on the sensing and mea-
surement possibilities for microsystems. We particularly
focus on piezoelectric based actuator with cantilevered
structure. The concern variables are the displacement
and the force.

Section II introduces the main but very influent speci-
ficities of the microscale. Current technical and physi-
cal limitations are explained and consequences on mi-
cro/nano robots and systems are given. Several state
of the art solutions are investigated including these
specificities. Section III introduces the full measurement,
i.e. where sensors display direct and suitable measured
information, and its use to the control of piezoelectric
actuators. When direct measurement is not available,
observers are required. Several applications of observer
techniques for piezoelectric actuators are introduced in
Section IV. Finally, we present the self-sensing tech-
nique where the piezoelectric actuator is also the sensing
element. In this case, no external sensor is necessary.
However, an electronic circuit followed by a convenient
observer scheme is used to provide the estimate force
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25000 Besançon - France
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and/or the displacement. This technique is presented in
Section V.

II. Microscales specificities

Micro/nano robots and systems require specific studies
and developments. Indeed, the down scaling greatly in-
fluences the required specifications for and the behavior
of robots and systems. For example, assembly of human
sized systems is generally done by hand for technico-
economical optimization reasons whereas assembly of
microsized components requires robotized systems assis-
tance. Thus, the development of automated microassem-
bly systems constitutes a key issue in the development
of new micro-assembled products which is not the case
at the macro scale [1]. Microscale systems or systems
acting at the microscale therefore require the integration
of actuators and sensors.

At the microscale, systems have to achieve positioning
accuracy and resolution in the submicrometer range and
forces in the micro-nano Newton range. Moreover, some
applications require high dynamic performances and then
high bandwidth sensors, for instance the automation of
piezoelectric based micromanipulation robots. Unfortu-
nately, sensors that guarantee these performances are
bulky and expensive (interferometers, scanning electron
microscopes, cameras, laser sensors). Furthermore, most
of these sensors generally enable only one or 2D mea-
surements. On the other hand, sensors that are compact
and convenient for packaging (strain gage, piezoceramic
sensor, etc.) are very fragile and have very limited
performances and robustness. In addition, scaling down
decrease signal to noise ratio. Specific studies to un-
derstand the sources of noises and to find solutions to
take them into account become of great importance.
Moreover, surface force becomes predominant at the
microscale. For example, they can reach 200 µN for 50x50
µN2 planar contacts [2]. These forces are for the most
influent, capillary pull-off and van der Waals forces. The
lack of models, knowledge and experimentations at the
microscale is a source of great difficulties for applications
like micromanipulation and microassembly [3].

All of these microscale specificities therefore require
developments of new sensors and sensing principles tak-
ing into account suitable range, resolution, free space,
and dynamic [4].
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III. Presentation of the piezoelectric
actuators used in this paper

In the sequel, we are interested by the measure-
ment/observation and control of displacement and force
in piezoelectric cantilevers (piezocantilevers) especially
dedicated to micromanipulation and microassembly
tasks, where the range of displacement is up to some
hundred of µm and the range of force up to several tens
of mN . Cantilevered piezoelectric actuators are used in
different applications: AFM-piezotubes, microgrippers,
tweezers, stepper (stick-slip and inch-worm) microrobots,
etc. Even if we use a unimorph piezocantilever with
rectangular section in this paper, the techniques can be
applied to other cantilevers.

A unimorph piezocantilever is made up of one piezo-
electric layer, often Lead Zirconate Titanate (PZT) ce-
ramic, and one passive layer. Commonly used passive
layers is Nickel. When applying a voltage U to the piezo-
layer, it expands/contracts resulting a global deflection δ
of the cantilever (Fig. 1). Furthermore, a force F applied
at its tip also results a deflection.

cantilevered piezoelectric

actuator
optical

displacement sensor

Simulink - Computer - dSPACE board

(a)

(b)

PZT

Nickel

measurement

HV-amplifier

D/A

converter
A/D

converter

δ

voltage U

voltage U F

 

 

 

Fig. 1. A unimorph piezoelectric cantilever.

IV. Full measurement and control
applications

We mean by full measurement the fact that all suit-
able signals used for the feedback control are directly
measured by sensors. The main part of this section is
to give a survey of sensors that can be used to control
piezoelectric based actuators, especially piezocantilevers.

A. Existing sensors

1) Pinpoint measurement: they concern measurement
that measure one point of the actuator. To measure the
displacement δ, optical displacement sensors are very
common (Fig. 1-b). It can offer up to 10nm of resolution
and ±150µm of range [5]. If the tasks need a higher reso-
lution and range, an interferometer measurement system
can be the solution. For applications which require the
force control, femto-tools force sensors are adapted [6].

2) Vision-based measurement: despite the high resolu-
tion of the optical and the femto-tools sensors, they are
limited to measure one point of the actuator. So, they
could not be used to search the location of the object
when there is not yet contact between the latter and
the actuator, or when the contact point has changed.
To surpass this limitation, vision based measurement
have been used [7]. This technique can measure both the
location of the object and the displacement/deformation
of the actuator.

The main disadvantages of the optical, the vision
based measurement and the femto-tools sensors are their
bulky sizes and their relatively high costs. As a result,
they are not adapted for packaged high performances
microsystems. This is why embarked sensors have been
developed. They are cited below.

3) Strain gauges: they are glued on the surface of the
piezoelectric cantilever and the displacement or force at
its tip is easily deduced. The offered resolution and the
accuracy depend on the number of the used gauges, of
the quality of the Wheatstone bridge and of the electronic
amplifier. Thanks to the low costs and the small sizes of
strain gauges, they have been used in numerous applica-
tions in the field of micromanipulation and microassem-
bly [8][9][10]. Finally, Arai et al. developed multi-axis
strain gauges dedicated to complex micromanipulation
[11]. The main disadvantages of strain gauges are their
fragility and their high sensitivity to noises.

4) Piezoelectric sensors: it consists in putting two cou-
ples of electrodes on the surfaces of the piezocantilever.
While one couple is used to supply the voltage input
for the actuation, the second one is used to measure the
output charge for the displacement/force sensing. These
sensors provide a high bandwidth [12]. However, they are
not adapted to static measurement because of the drift
(creep) characteristics [13]. Piezoelectric sensors can be
based on classical piezoelectric materials such as PZT
[14][15] or PVDF (PolyVinylidine DiFluoride) [16][17].

5) Capacitive sensors: an alternative way of embarked
sensors is based on the capacitive principle. Similarly to
the piezoelectric sensor, it can be designed and developed
with the same bulk than the actuator. In fact, the sensing
element and the actuation element are made of the same
material making them very adapted to microfabrication
techniques [18].

6) Piezomagnetic sensors: these sensors are based on
transducers whose the magnetization changes when a
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mechanical stress is applied [12]. An example of piezo-
magnetic sensor is given in [19].

B. Commonly used control techniques
Because the measurement (displacement or force) con-

stitutes the variable to be controlled, output feedback
with controllers in cascade are often designed (Fig. 2-a).
They ranges from PID structure with a trial and error
tuning to advanced H∞ control laws, with or without
accounting the nonlinearities in the piezoelectric actu-
ators [20][21][22]. The results (Fig. 2-b) are convenient
to the specifications required in micromanipulation and
microassembly, such as micrometric accuracy and some
tens of millisecond of settling time.
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Fig. 2. (a) bloc scheme of the output feedback control using
controllers in cascade. (b) a series of step response of the closed-
loop.

C. Limitation of the used sensors
On the one hand, high accuracy sensors are expensive

and bulky (optical, interferometer, etc.). On the other
hand, small sensors are fragile and very sensitive to noises
(strain gauges, etc.). Furthermore, some applications
necessitate the measurement of both displacement and
force during the tasks, as example during a pick-and-
place task, and therefore necessitate many sensors.

In order to gain space and to go to the packageability
of the microsystems, two approaches were proposed: 1)
the use of small sensors (strain gauges) and the rejection
of the noises using the Kalman filtering, 2) the use
of reduced number of sensors and the application of
observers to complete the measurement. The next section
is focused on these points.

V. Observers and non-full measurement

In this section, we consider that one or more variables
used for the feedback is not directly measured. The use
of observer techniques is therefore advised.

Reconsider the piezocantilever presented in Fig. 1. The
model linking the input voltage U , the force F applied
at the tip and the output deflection δ, in the linear case,
is:

δ = dp.U.D(s) + sp.F.D(s) (1)

where dp and sp are the piezoelectric and the elastic
coefficients respectively, and D(s) (with D(0) = 1) is the
dynamic part.

When the applied electrical field -through the voltage
U - is high, the nonlinearities behavior of the piezoelectric
materials becomes nonnegligible. These nonlinearities are
the hysteresis and the creep and need to be taken into
account when applying an observer. The nonlinear model
of the actuator is therefore [21]:

δ = H (U) .D(s) + Cr (s) .U + sp.F.D(s) (2)

where H (·) is an operator that describes the (static)
hysteresis and Cr(s) is a linear approximation of the
creep.

A. Strain gauges sensors, Kalman filtering and state
feedback control

In [23], strain gauges were used to measure the deflec-
tion δ of the piezocantilever with a view to reduce the
sizes of the whole microsystems (actuators and sensors).
To reduce the noises of the measured signals, the authors
apply a Kalman filtering computed with the linear model
(equ 1). In addition to the noises rejection, the technique
allows the estimation of the states of the system and
therefore allows the use of state feedback control tech-
niques (Fig. 3).

U
piezoactuator

Kalman

filter

δδr
( )G p

 
+

-

δ̂

X̂

K

Fig. 3. Measurement of δ with strain gauges and use of a Kalman
filter.

B. Force estimation using the Luenberger observer
In [24], two piezocantilevers forming a microgripper

were used. While one piezocantilever is used to accurately
position the manipulated object, the second one is used
only to estimate the manipulation force (Fig. 4-a). To
estimate the input force, the latter has been considered
as a state of the system. Because a derivative is required
in the state equation, the author considers the condition
dF
dt = 0. As a result, the state vector is composed of the
deflection δ, its derivative dδ

dt and the force F . Based on
the model in (equ 1), a Luenberger observer has been
applied (Fig. 4-b).
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Fig. 4. (a) use of one piezocantilever of the microgripper to
estimate the manipulation force. (b) estimation of the force using
the Luenberger observer.

C. Force estimation and Unknown Input Observer tech-
nique (UIO)

When the force is considered as a state to be estimated,
it requires that the dynamics model of the force is
known. In the previous case, the derivative of F has
been considered to be null and the estimation was only
valuable for static case. It has also been demonstrated
that the dynamics of the force in piezocantilevers always
depend on the characteristics of the manipulated object
[25]. Therefore, considering the force as a state is not con-
venient if the estimate will be used in a control purpose.
This is why the Unkown Input Observer techinque (UIO)
has been proposed recently [26]. The Inverse-Dynamics-
Based UIO technique [27] was especially applied. In
this, we consider the force as an unknown input. A
classical observer is first employed to estimate the state
vector (composed of the deflection and its derivative).
Afterwards, a second observer is applied to estimate the
force (Fig. 5).

D. Force estimation in the nonlinear case, open loop
Observer

In [28], another approach was proposed to estimate the
force. It consists in using the nonlinear model in (equ 2))
and directly deducing the force:

F̂ =
1

sp.D(s)
(δ −H (U) .D(s)− Cr (s) .U) (3)

where the hysteresis H(·) was modeled by the Bouc-
Wen approach.

U piezoactuator

state

Observer force

Observer

δ

( )G p

δ̂

F

X̂ F̂

Fig. 5. Inverse-Dynamics-Based UIO technique to estimate the
unknown input force.

This method requires the bistability of D(s) as its
inverse is used in the (open-loop) observer. If the system
is linear, the method can also be applied. Indeed, the
term dpU of (equ 1)) is a linear approximation of the
hysteresis term H(·) in (equ 2)), the creep Cr(s) being
set to zero.

As presented in Fig. 6, the observer has an open-loop
structure, and therefore is sensitive to model uncertainty.

U piezoactuator
force

Observer
δ

F

F̂

Fig. 6. Nonlinear open-loop observer.

E. Application to control

The Luenberger observer for the estimation of δ and
dδ
dt was successfully used in a state feedback control
law of the displacement [24]. References [25][29][30] used
successfully the nonlinear open-loop observer to estimate
the force and to apply H∞ based controllers.

VI. Self-sensing based control

As shown above, accurate sensors are often bulky
and expensive while integrable ones are fragile and not
robust. There exist an alternate, simple and cost-effective
up-grade solution for most types of existing piezoelectric
actuators: the self-sensing technique.

A. Principle of the self-sensing

It consists in using the actuator as also the sensor.
The principle is as follows. When a voltage U and/or
an external force F are applied to the piezocantilever,
it bends. Charges Q also appear at its surface. Using
a charge amplifier (electronic circuit) and a convenient
observer, it is possible to estimate both the dipslacement
and the force [41]. This ”intrinsic technique”can therefore
be used in a closed-loop system without needing external
sensors.

Often charge measurement is rejected on false idea that
PZT is a very bad isolating material. In fact, not the
leaking resistivity, which is high enough for preserving
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charges (hundreds of seconds) but ferroelectric mate-
rial non-linearities (hysteresis, creep) or the temperature
influence put the challenge on the charge-based self-
sensing.

B. Historical of the self-sensing

The first use of ”self-sensing” term dates back to 1992
when Dosch et al. [31] successfully damped the vibration
of a piezoelectric beam without the aid of external sen-
sors. Voltage drop provided from a capacitive bridge was
processed in an analog circuit, amplified and returned
back to the piezoelectric element. Soon, several indepen-
dent applications began to emerge for beam vibration
control or micropositioning of piezo stacks. Several years
later Takigami et al. [32] applied the method to force self-
sensing and control a large size bimorph actuator, using a
half-bridge circuit, a voltage follower and PC-based data
acquisition system. They experimentally shown that the
stiffness of the manipulated object does not affect the
measurement. However, the electronic circuit limited the
applied voltage range and the nonlinearities (hysteresis
and creep) of the piezoelectric element were not compen-
sated.

A self-sensing based on integrator electronic circuit was
introduced in [33] focusing on a compounding control of
displacement combining a PID feedback control with a
feedforward control of hysteretic behavior. Self-sensing
force control for piezo stack was introduced in [34][35].
In the latter paper, the hysteresis nonlinearity was taken
into account by using the generalized Maxwell-slip hys-
teresis operator [36]. As a result, the static displacement
error was reported to 2 to 4% while static force error is
nearly 5%. In [37], a modified bridge electronic circuit
with adaptable gain was intended for vibration control
under structural deformation. In [38], self-sensing tech-
nique was used to ameliorate the positioning and vibra-
tion in hard-disk drives. Finally, in [39], the use of self-
sensing microdispensing system shows better positioning
performance than the use of external sensors.

Other sensorless methods close to self-sensing concept
consist in shaping several electrodes on the actuator and
dedicating them separately for actuation or sensing [14]
(see also the Section-IV.4. Piezoelectric sensor). The
drawback is that a fraction of the actuation capability
is lost. However, the nonlinear effects are avoided and
signals are well separated. More recently a SPM piezo-
tube scanner with a new electrode pattern allowed self-
measurement of nanometer resolution with improved
transfer function in the observer [40].

C. Static displacement/force self-sensing

Most of the above papers focused on short-term (less
than 1s) displacement and/or force self-sensing control or
vibration damping. Until our recent works ([41] for the
displacement self-sensing, [42] for the displacement and
force self-sensing), there was a lack of publications re-
lated to long term self-sensing of piezoelectric cantilevers

intended for microsystems manipulation. In quasistatic
(low frequency) regime, the electric charge over the
electrodes of the uni- or bimorph piezocantilever is intrin-
sically proportional to the free displacement. The main
ferroelectric nonlinearities (hysteresis, creep) are auto-
matically included. Thus, there is no need to compensate
the hysteresis and creep of the actuators. The electronic
circuit and the observer presented in [41](Fig. 7) relies on
the current integration and compensation of the second-
degree nonlinearities such as PZT leaking resistance, bias
currents and dielectric absorption. The temperature in-
fluences was also discussed in the paper, and the attained
accuracy was 0.5% over a period of 600 seconds. In [42]
we reported the simultaneous force-displacement self-
sensing of the piezo cantilever entering in contact with
an object. For that purpose, we modeled the nonlinear
behaviour of the free actuator (including hysteresis and
creep operators) and fused the result with the electronic
signal, deriving the estimate force and displacement.

Fig. 7. Generic principle of a self-sensing system [41].

D. Dynamic displacement self-sensing
The method proposed in [41] was upgraded in [28] in

order to complete the static displacent self-sensing by
the dynamic part (Fig. 8). The estimate signal can be
therefore used control applications.

Fig. 8. Extension of the static self-sensing in [41] to dynamic self-
sensing [28].

E. Discussion
To sum up, the first advantage of self-sensing is the

cost, external sensors not being needed anymore. System
will be more flexible in terms of space occupation, allow-
ing better miniaturization and dexterity in terms of DoF.
Also, actuators dynamics will no longer be affected by
mechanically attached sensors (e.g. strain gages or micro-
mangnets). Number of connecting cables will be reduced.
Disadvantages consist in adding a supplementary elec-
tronic circuit (but of reduced complexity). Electronic
circuit is based on a capacitive bridge (or divider) or a
current integrator. Specific applications with dedicated
electrodes for sensing (such as in Section-IV.4. Piezoelec-
tric sensor) may measure directly strain-induced voltage.
Attention has to be paid for preserving the charge as
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long as possible. Non-linearities such as hysteresis and
creep due to ferroelectric domain relaxation put the most
challenge on self-sensing technique, limiting its accuracy,
especially in force sensing. Identifying these nonlinear
effects requires an extra procedure. Finally, temperature
influence, noise or other uncertainties may prevent the
system to attain required accuracy or resolution.

VII. Conclusion

This paper presented the different methods that have
been used to measure, observe and sense the signals
(especially force and displacement) in piezoelectric ac-
tuators and particularly piezocantilevers.

We first presented the existing sensors that can be
used. They offer a full-measurement based control appli-
cations. Afterwards, we shown that observers can be used
to complete the measurement when some signals are not
directly measured. Finally, the self-sensing techniques -
that can be applied when no sensor is available- were
presented and end the paper.
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Measurement and Control for High-Speed Sub-Atomic
Positioning in Scanning Probe Microscopes

Andrew J. Fleming and Kam K. Leang

Abstract— Scanning probe microscopes require the control
of position to within sub-atomic resolution. This workshop
presentation will begin with an overview of the challenges
and limitations encountered when attempting to achieve such
resolution. This will be followed by an introduction to new
measurement technologies and control techniques recently de-
veloped for high-speed nano- and micro-positioning systems,
with application to scanning probe microscopy and fabrication.

I. INTRODUCTION

Scanning Probe Microscopes (SPMs) record localized
physical interactions between a probe and sample as a
function of position. A diverse range of techniques and
probes have become available to image properties such
as topography, electrical and mechanical forces, chemical
bonding and biological interactions [1]–[5].

The positioning of the SPM probe tip relative to the
sample is achieved with two basic configurations: (a) scan-
by-sample or (b) scan-by-probe as shown in Figure 1. In
the scan-by-sample configuration, the nanopositioner, such
as the flexure-based design shown equipped with three piezo
stacks, moves the sample relative to a fixed SPM probe. The
x and y axis piezos position the sample along the lateral
direction (parallel to the sample surface); az axis stack
moves the sample vertically. The deflection of the cantilever
is measured optically, by reflecting a laser beam off the end
of the cantilever onto a nearby photodetector.

Precision positioning is a key requirement in all AFM
applications. In particular, precise position control in both the
lateral and vertical directions is required to hold the probe
at a desired location or to track a desired motion trajectory.
For instance, when the AFM is used to indent nanofeatures
on a semiconductor surface to create quantum dots (2-80
nm in size), accurate position control of the indenter tip is
needed because the probe position error directly affects the
size, spacing, and distribution of the nanofeatures. Even 2-4
nanometers variation in size and spacing of the nanofeatures
can drastically alter their properties [6]. Additionally, high-
speed control of the probe’s movement is needed for high
throughput fabrication, imaging, and metrology. Without
accurate motion control along a specific trajectory at high
speed, oscillations can cause the tip to collide with nearby
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features, which leads to excessive tip-to-sample forces. The
large forces can damage the tool tip or soft specimens such
as cells. Therefore, accurate output tracking, or positioning,
is critical in AFM.

Due to their high speed, compact size and essentially
infinite resolution, piezoelectric actuators are used almost
exclusively in scanning probe microscopes. SPM scanners
and vertical positioners are usually constructed from either
piezoelectric tube actuators [7], [8] or faster piezoelectric
stack actuators [9]. Although scanners constructed from
piezoelectric actuators have extremely high resolution, the
overall accuracy is limited by creep and hysteresis [10].
For example, the positioning error due to hysteresis in a
piezoelectric tube actuator has been reported to be±9.7%
of the scan-range [11]. This implies a maximum positioning
error of almost 20% between the forward and backward
scanning paths.

To avoid imaging artifacts, SPM’s require some form
of compensation for positioning non-linearity. Methods to
accomplish this, including feedback and feedforward control,
and the associated measurement and estimation problems are
discussed in the following sections.

II. HIGH-SPEED LOW-NOISE POSITION
MEASUREMENT, ESTIMATION AND CONTROL

The most most popular technique for control of piezoelec-
tric actuated systems is sensor-based feedback control with
an integral or proportional-integral controller. This approach
is simple, robust to modeling error, and effectively reduces
non-linearity at low-frequencies. However, the bandwidth of
such systems is severely limited by low gain-margin [12]. It
can be shown that the maximum closed-loop bandwidth is
equal to the product of twice the damping ratioξ and natural
frequencyωn [13], that is,

max. closed-loop bandwidth< 2ωnξ. (1)

This is a severe limitation as the damping ratio is usually in
the order of 0.01, so the maximum closed-loop bandwidth is
less than 2% of the resonance frequency. Techniques aimed
at improving the closed-loop bandwidth are based on either
inversion of resonant dynamics using a notch filter [14] or a
damping controller [15]–[18]. Damping controllers are less
sensitive to variations in resonance frequency than inversion
based controllers but an integral tracking loop is still re-
quired. This inevitably results in low stability margins and
instability if the resonance frequency is sufficiently reduced.
In addition, the greater bandwidth of damping and inversion
based controllers increases the amount of positioning noise.

10



Fig. 1. Two positioning schemes for SPMs: (a) scan-by-sample and (b)scan-by-probe.

Fig. 2. A piezoelectric actuator with integrated strain and force sensors.
The strain sensors are bonded to the front and back surface while the force
sensor is a small piezoelectric stack placed between the actuator and load
ball. The load half-ball is used to eliminate the transmission of torsion and
bending moments to the force sensor and moving platform.

To demonstrate the limitations imposed by sensor noise,
consider a nanopositioner with feedback control derived from
a capacitive sensor with a noise density of 20 pm/

√
Hz. An

estimate ofthe RMS position noise can be found from the
noise density and square-root of closed-loop bandwidth,

RMS Noise=
√
3.14× Bandwidth× Noise Density, (2)

where 3.14 is a correction factor to convert the 3 dB
bandwidth of a first-order system to an equivalent noise
bandwidth. For example, with a closed-loop bandwidth of
1.8 kHz, the positioning noise is 1.5 nm RMS. If the noise
is normally distributed, the6σ peak-to-peak noise will be
approximately 10 nm.

In this work, a new technique is presented for control
of hysteresis, creep and vibration in piezoelectric actuated
systems. As pictured in Figure 2 and 3, the proposed tech-
nique utilizes a resistive strain gage and piezoelectric force
sensor to estimate displacement. The piezoelectric force
sensor exhibits extremely low noise at frequencies in the
Hz range and above but cannot measure static displacement
and is prone to drift. To eliminate low-frequency errors, an
estimator or strain gage measurement is utilized at these
frequencies.

The measurement noise of the proposed piezoelectric
sensor is compared to a resistive strain gage and inductive
sensor in Figure 4. The superior noise performance of the
piezoelectric sensor is evident. The noise density is more than

Fig. 3. High-speed nanopositioning platform with strain and force sensors
fitted to the y-axis actuator.

two orders of magnitude lesser than the strain and inductive
sensors at 100 Hz. The noise density also continues to reduce
at higher frequencies.

In addition to low noise, another benefit of the piezoelec-
tric force sensor is the zero-pole ordering of the transfer
function from applied actuator voltage to measured force.
This allows a simple integral controller to provide excellent
tracking and damping performance with guaranteed stability.

The proposed technique of strain and force feedback was
applied to the high-speed nanopositioning platform pictured
in Figure 3. The closed-loop frequency response demon-
strated a 33 dB damping of the resonance peak and a closed-
loop bandwidth of 1.8 kHz which is close to the open-
loop resonance frequency of 2.4 kHz. In the time domain,
excellent tracking of a 130 Hz triangle wave is demonstrated
in Figure 5. Hysteresis was reduced from 8.5% to 0.46% at
10 Hz. Although the strain gage contributes the majority of
closed-loop positioning noise, the bandwidth of this signal
is only 10 Hz. This resulted in a closed-loop noise of
approximately 0.67 nm peak-to-peak which is 0.0067% of
the 10µm range.
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III. FEEDFORWARD CONTROL

Unlike feedback control, which reacts to the measured
tracking error, feedforward control compensates or antic-
ipates for deficit performance, such as dynamic and hys-
teresis effects in nanopositioning systems. The feedforward
approach exploits some information about the system, and
thus a well-designed feedforward controller requires suffi-
cient knowledge of the plant dynamics and nonlinearities.
As shown in Figure 6(a), an inverse model produces the
feedforward inputuff that is applied to the nanopositioning
system. The effectiveness of feedforward control, that is how
close the actual outputy matches the desired outputyd,
depends on thequality of the inverse model and whether ex-
ternal disturbances are present. Being an open-loop approach,
model uncertainty is often a challenge in feedforward con-
trol; however, the advantages often outweigh the disadvan-
tages for applications that include high-speed scanning probe
microscopy [19], [20]. In particular, feedforward control
can provide high-bandwidth positioning, with performance
that exceeds that of feedback-based methods [21], [22]. For
robustness, feedforward control can be integrated with feed-
back control [23]. The integrated approach also eliminates
the need for modeling and inverting nonlinear behaviors, a
task that may be difficult and computationally demanding.
Also, feedforward control does not require continuous sensor
feedback, and thus sensor-noise related issues can be avoided
entirely.

The input-output behavior of a nanopositioning system
can be quite complex, consisting of structural dynamics
and nonlinearities, such as hysteresis. A popular model that
describes the dynamics and nonlinearity in a piezoactuator is
the cascade model as depicted in Figure 6(b) [19], [24]. To
determine a feedforward input for precision output tracking,
each submodel is inverted as illustrated in Figure 6(c).

The inversion-based method presented above may yield
excessively large inputs when the system has lightly damped
system zeros. These large inputs can saturate the voltage
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Fig. 5. The open- and closed-loop response to a 600 nm peak-to-peak
130 Hz triangle wave. The RMS deviation from linear over a half period was
10 nm RMS in open-loop and 1.9 nm RMS in closed-loop. The maximum
peak-to-peak error over 90% of a half period was 45 nm in open-loop and
6.7 nm in closed-loop.

amplifiers that drive the piezoactuator, or, even worse, depole
the piezoactuator. Additionally, large model uncertainties
around the resonant peaks or lightly damped zeros can cause
significant error in computing the feedforward input. These
model uncertainties thus lead to a lack of robustness when the
inversion-based feedforward method is used. To overcome
these issues, an optimal feedforward input is obtained by
minimizing a quadratic cost function [25]. By choosing
the frequency-dependent weightsR(jω) and Q(jω), it is
possible to systematically consider the effects of the input
magnitude and the model uncertainties. For instance, the
input energy weightR(jω) can be chosen to be much larger
than the tracking error weightQ(jω) at frequencies where
large model uncertainties exist or around lightly damped
zeros. For details and implementation issues, see [26], [27].

To handle the hysteresis nonlinearity using the feedforward
approach, the Preisach and Prandtl-Ishlinskii models are
considered. These models are based on the assumption that
the output is a weighted sum of elementary relays [28], [29].

Feedforward control of hysteresis and dynamics is re-
quired for long-range, high-speed nanopositioning. In this
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case, the feedforward control inputuff (t), which accounts
for both the dynamic and hysteresis effects, is obtained
by passing the desired output trajectoryyd(t) through the
inverse models in reverse order as illustrated in Figure 6(c).
This process is performed offline, followed by applying the
feedforward input to the nanopositioning system. First, the
dynamic inverse produces an outputvff (t). The output from
this first stage then becomes the input to the inverse-Preisach
model, which produces the final feedforward inputuff (t) for
hysteresis and dynamics compensation.

For improved precision, an iterative-based approach, com-
monly known as iterative learning control (ILC) [30], can
be applied to compute the feedforward input [22]. The
iterative technique avoids the need to model and invert the
dynamics and nonlinearities of a positioning system for
feedforward control, provided that iterations can be used.
Some immediate advantages is minimal system information
is needed for good tracking, and if an inverse model of the
system dynamics is available, it can be incorporated into the
update law to dramatically improve the rate of convergence.
A block diagram of the control scheme is shown in Figure 7,
whereyd is the desired output, anduk andyk are the input
and output at thekth trial, respectively. The task is to design
a recursive algorithm that generates an input for the next
step, i.e., uk+1, such that the performance of the system is
better than the previous step.

The feedforward approach has been applied to control
the motion of a piezo-based nanopositioner in an atomic
force microscope (AFM) [31], [32]. Figure 8 shows AFM
images that compare before and after feedforward control

Positioning
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yku
k

Σ yd

Σ
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+-
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+

Fig. 7. Block diagram of iterative feedforward control. The iteration
number isdenoted byk.

is applied. The hysteresis effect causes the parallel features
to appear curved as shown in Figure 8(a). However, by
modeling the hysteresis behavior and inverting the model for
feedforward control, the resulting AFM image [Figure 8(b)]
shows the true surface topology, where the distortion effect is
compensated for by the feedforward input. Likewise, during
high-speed scanning movement-induced structural vibrations
are excited causing distortion in the form of ripples to
appear across an AFM image as shown in Figure 8(c). These
distortions are minimized by the feedforward approach as
shown in Figure 8(d).
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Abstract—Capacitive force and position sensing in 
combination with electrostatic actuation is used to design 
miniature tools capable of measuring forces between nano- and 
micronewtons to mechanically characterize microscopic 
samples. The functional principle of the tools as well as an 
introduction into the fabrication and capacitive readout are 
given. The calibration, being one of the most challenging parts 
of microforce sensing, as well as the methods to calculate the 
sensing uncertainty are presented.  

I. INTRODUCTION 
ne of the key engineering objectives in microrobotics is 
the sensing of microscale forces, to provide a feedback 

for controlling the micromanipulation process. In other 
fields like mechanobiology, material science and life science 
a trend towards the measurement of mechanical properties of 
ever-smaller samples can be seen. During the past few years, 
the focus in e.g. plant development biology has shifted from 
studying the organization of the whole body or individual 
organs towards the behavior of smallest units of the 
organism, the single cell [1]. 

The aim of this research is to develop novel tools to 
provide researchers in different fields with the means to 
gather quantitative information on the mechanical properties 
of microscopic samples. An assortment of miniature force 
sensors capable of measuring forces in the micro- to 
nanonewton range have been developed and successfully 
used in a variety of applications. In [2, 3] the design of a 
single- axis capacitive force sensor and its application to 
study insect flight control, the mechanical characteristics of 
mouse embryo cells and the threshold for touch sensation in 
C. elegans [4] are shown. In [5] a sensor based on an optical, 
diffractive micrograting demonstrates the measurement of 
the injection forces into drosophila embryos and in [6] the 
use of an atomic force microscope (AFM), based on optical 
beam deflection, shows the measurement of molecular 
interaction forces. A sensor based on the trapping of a 
magnetic particle in a magnetic field is shown in [7] and is 
used to measure the force- extension curves of DNA 
molecules. 

II. CAPACITIVE BASED TOOLS 
The focus of this research lies in the development of 

capacitive based microforce sensors capable of measuring 
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forces in the range from nano- to millinewtion. Capacitive 
force sensors offer advantages, such as a high signal-to-noise 
ratio the ability to measure static as well as dynamic forces 
with frequencies up to a few kHz and virtually no sensitivity 
to temperature, humidity or illumination conditions. 
Capacitive one, two and three axis forces sensors (figure 1a) 
have been developed. These sensors consist of a movable 
body suspended by flexures within an outer frame. A force 
applied to the probe, attached to the movable body, results in 
a relative motion of the body and the frame, which can be 
measured by attached capacitive electrodes as a change of 
capacitance. By allowing the sensor to move in multiple 
directions and by using several of these capacitive 
displacement sensors, forces in multiple axes can be 
measured. 

By combining the force sensors with electrostatic 
actuators complete measurement systems can be realized, 
such as a two axis monolithically integrated micro-tensile 
tester shown in figure 1b. The sample e.g. a cell is measured 
between the tips of the two end-effectors. The right end-
effecter arm is connected to a two-axis microforce sensor 
allowing it to simultaneously measure forces and the 
position of the end-effecter in x- and y-direction. The left 
arm is connected to a platform suspended by flexures within 
two orthogonally attached actuators. Both actuators can 
move along one axis (x or y) and offer position feedback, 
therefore the platform can be actuated in two axes and 
assuming a rigid body, the position of the end-effecter can 
be measured in x- and y-directions.  

III. MICROFABRICATION 
The capacitive based tools presented, are fabricated using 

a MEMS (Micro-Electro-Mechanical System) bulk silicon 
micro-fabrication process. For in plane electrostatic 
actuation and capacitive sensing a silicon-on-Insulator (SOI) 
process described in [8] is used. It involves the etching of 
the thick handle layer (400 µm thick) as well as the buried 
oxide (BOX) around the outer frame of the sensor and 
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subsequently etching of the active elements like the flexures 
and the capacitors as well as the body of the devices into the 
50 µm thick device layer. In the case of the three-axis force 
sensor also out of plane motions need to be detected. 
Therefore instead of only a single device layer, a double SOI 
wafer is used with two device layers (each 25 µm thick). By 
measuring the capacitance between the top device layer of 
the fixed electrode and the lower device layer of the 
movable electrode an out of plane motion can be detected 
[9]. 

IV. CAPACITIVE READOUT 
The main drawback of capacitive position or force sensing 

is the non-linear relationship between the change of 
capacitance and the electrode distance. This is overcome by 
differentially measuring two capacitive changes in opposite 
directions. A commercial capacitance-to-voltage converter 
IC (CVC1.1, GEMAC) is used to interface each capacitor 
pair on the sensor. More details about capacitive sensing can 
be found in [10].  

V. SENSOR CALIBRATION 
Precise calibration of multi-axis MEMS force sensors is 

difficult for several reasons, including the need to apply 
known force vectors at precise positions and orientations 
which risk damaging the small and fragile microdevices 
[11]. 

The most commonly used microforce sensor, the AFM, 
has led to the development of a large number of methods to 
calibrate forces in the micro- and nanonewton range [12]. 
However, the accuracy of these methods is unknown since 
none of them are traceable to the Systeme International (SI) 
d’unite ́ s. The unit force is derived from the definition of 
Newton using a combination of base SI units (kg, m and s) 
[13].  

The capacitive sensors measure a change of the position 
or the force as a change of the sensor output voltage. But the 
exact numerical relationship is not known a priory. A 
common approach to this problem is to model this 
relationship by e.g. an FEM model. But due to imperfections 
in the microfabrication process, e.g. over etching of the 
flexure elements, the results will be inaccurate and more 
importantly the measurement cannot be traced back to the SI 
units. 

The position and force sensors are calibrated by 
comparing them with a reference standard. For the 
measurement of the displacements a microscope with 
attached camera is used. The system is pre-calibrated using a 
standard optical target (USAF 1951, Edmund optics). For 
the calibration of the force sensors, a custom build reference 
force sensor is used, which is pre-calibrated using weights 
with a known mass, pre-calibrated using a semi-micro-
balance (XS205DU, Mettler Toledo) for which the 
uncertainty is known. 

Using a micromanipulator the reference force sensor is 

pushed against the microforce sensor. By comparing the 
sensors output voltage and the applied force, the calibration 
coefficients of the sensor can be found.  

VI. UNCERTAINTY ANALYSIS 
The result of a measurement is only an approximation of 

the value of the measurand and, thus, is complete only when 
accompanied by a statement of the uncertainty of that 
estimate [14]. The measurement uncertainty is a parameter 
associated with the results of a measurement that 
characterizes the dispersions of the values that could 
reasonably be attributed to the measurand [15].  

Therefore, besides the calibration coefficients, the most 
important characteristics of the sensors are measured and 
their influence onto the measurement uncertainty calculated.  

The Joint Committee for Guides in Metrology (JCGM) of 
the Bureau Interanational des Poids et Mesures (BIPM) has a 
working group with responsibility for the expression of 
uncertainty in measurement. They have published the ISO 
Guide to the Expression of Uncertainties in Measurements 
(GUM) [14], which has become the internationally accepted 
master document for the evaluation and combination of 
these uncertainties. In the GUM a deterministic method 
based on the law of propagation of uncertainties and on the 
characterization of the measured input quantities be either 
normal or t-distribution, allowing the calculation of coverage 
intervals for the output quantities. To deal with cases, which 
cannot reasonably be approximated by Taylor series 
expansions and involve other PDF e.g. rectangular, a 
supplement 1 has been added to the GUM describing the 
Monte Carlo method. This method evaluates the propagation 
of distribution by performing random sampling from the 
input probability distributions. And in the latest supplement 
these methods have been extended two multivariate 
problems with any number of output quantities.  

VII. CONCLUSION 
Capacitive sensing is used to measure small force and 

position changes. In combination with electrostatic actuators 
entire measurement systems can be realized capable of 
mechanically characterizing microscopic samples. The 
sensor calibration and the calculation of its uncertainties 
remain one of the most challenging problems in microforce 
sensing,  

Increasing effort is being made in multiple national 
measurement institutes (NMI) to create an SI traceable 
reference standard for the calibration of small forces. An 
overview of the different approaches can be found in [13]. 
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Abstract— Recently, many different types of thin-film 
nanostructures such as semiconductor nanofilms, single 
atomic layer carbon nanofilms (graphene) have been 
synthesized toward their nanoelectronics and 
nanoelectromechanical systems (NEMS) applications. 
However the precise electrical and mechanical properties of 
these structures are still being required. We introduce in situ 
characterizations with direct force sensing in large range but 
high resolution toward the NEMS based on thin-film 
nanostructures. 
Index Terms— Nanomanipulation, force sensing, helical 
nanobelts, tuning forks 

I. INTRODUCTION 
icro/nanomanipulation and assembly are important 
technologies toward the development of 

micro-nanoelectromechanical systems (MEMS/NEMS) 
[1-3]. However these manipulations are currently being 
performed by human operators manually which makes the 
task very stressful and time-consuming. It is mainly 
because of the lack of proper sensing tools to measure 
different physics in micro/nano scale. Currently available 
sensors cannot measure such different physical transitions 
because of their limited sensing resolution and range 
(Figure 1). 

For an automated micro/nanomanipulation, it is 
necessary to have both visual and force feedback. In-situ 
scanning electron microscope (SEM) nanomanipulation 
was proposed to combine good enough visual feedback but 
the force sensing is still in their infancy. Therefore we 
report our work on the high resolution, wide range force 
sensing with helical nanobelts and tuning forks that can be 
utilized in the in-situ SEM nanomanipulation system. 

The developed force sensing mechanisms can also be 
utilized to characterize the mechanical properties of 
ultra-flexible nanostructures. Mechanical property 
characterizations of ultra-flexible three-dimensional 
nanostructures are important during the development of 
NEMS. It also requires ultra-high precision and wide range 
force calibration. 

For even much higher resolution of sensing, optical 
tweezers [4], magnetic bead [5], and atomic force 
microscopy (AFM) [6] have been mostly studied, and AFM 
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among them is the mostly used. However these methods are 
limited in large displacement measurement and principal 
difficulty to measure 3-D forces and suffer from several 
limitations such as their limited force and displacement 
ranges. Considering the force resolution, optical method 
can easily reach piconewtons to the contrary of the other 
methods which are in the upper range of nanonewtons [7]. 
Furthermore cantilevers need strong calibration and are 
difficult to be used as a sensor or actuator for several 
dimensions (the cantilever’s torsion is difficult to 
characterize). Optical tweezers are useful for a large variety 
of object to characterize, however they are strictly limited 
in the piconewton range of the forces to measure. For 
studies that require larger forces, atomic force microscope 
cantilevers are more suitable choices because they are 
stronger (less compliant) than optical tweezers. Finally, 
their potential integration with experimental setup is 
challenging and expensive because of necessary external 
laser optics, especially in vacuum. 

The studied whole systems are limited in their force 
range or in their displacement range (Figure 1). To build a 
sensor which is able to measure piconewton as well as 
millinewton and capable of picometer displacements as 
well as millimeter displacement still remains a challenging 
research area. The newly proposed sensor would then be 
useful in a wide variety of objects to characterize such as 
nanowires, tissues, viruses, bacteria, living cells, colloidal 
gold, and even DNA. The further advantage consists in its 
simple and straightforward integration that will lead to the 
conception of complex MEMS (nano-translators with high 
displacement range, nano-sensors with high force range) for 
future complex bio- or non-organic applications. 

The aim of this workshop is to introduce our recent 
works in development of large range force sensing tools 
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                        (a)                                                     (b) 
Fig. 1. Large displacement/force sensing measurement tools (a) and 
applications (b). 
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(micronewton range with the resolution of hundreds of 
piconewton) for in situ property characterizations of ultra 
flexible nanostructures. For this purpose, the sensors should 
be integrated to electron microscopes. Thus the sensors 
should also be vacuum and electron beam compatible. For 
this aim, we are currently developing two different types of 
force sensors. In this workshop, the first part will describe 
the 3-D piezoresistive helical nanobelt (HNB) force sensors 
and their applications. Then the tuning fork based force 
sensors will be shown. Using these tools, we therefore can 
study electromechanical properties of ultra-flexible 
nanostructures by in-situ scanning electron microscope 
(SEM) nanomanipulation with direct force characterization 
by incorporating nanomanipulators. 
 

II. LARGE RANGE FORCE SENSING TOOLS 

A. Piezoresistive Helical Nanobelts as Force Sensors 
HNBs with metal pads attached on both sides were 

fabricated using conventional microfabrication techniques 
(Figure 2a) [8]. With the metal connectors, good electrical 
contact can be achieved. Besides the electromechanical 
characterization, such connectors also allow for the 
integration of these structures into more complex 
assemblies. Nanomanipulation inside an SEM was used for 
their electromechanical property characterization. The 
experimental results showed that the structures exhibit a 
unusually high piezoresistive response. Moreover, 
electrostatic actuation was used to excite the structures at 
their resonance frequency and investigate their resistance to 
fatigue. With their low stiffness, high strain capability, and 
good fatigue resistance, the HNBs can be used as 
high-resolution and large-range force sensors. By variation 
of design parameters, such as the number of turns, 
thickness, diameter, or pitch, a HNB with the required 
stiffness can be designed through simulation. The 
fabrication process is suitable for further miniaturization. 
Nanometer scale diameter and wire width can be achieved 
through changes in the later design and by using 
electron-beam lithography, respectively.  

B. Tuning Fork Force Sensor 
As another force sensing tool, tuning fork was utilized to 

function in dynamic force measurement applications. The 
wide range (16.6pN - 500 nN) force sensor based on tuning 
fork and FM-AFM method was developed. Attaching a 
high aspect ratio probe tip onto tuning fork enabled 
amplification to the amount of stress applied to the tuning 
fork body. The measured frequency shift of tuning fork was 
calibrated with as-calibrated cantilever in the nano-newton 
range force and HNBs with the stiffness estimation from 
the model for the sub-nanonewton range (Figure 3). The 
demonstrated force sensors are easily integrated to SEM 
thus the demonstrated technology have strong potential in 
nanomanipulations of various nanostructures.  

C. Potential Applications 
The static nanomechanical characterization of ultra-thin 

film nanostructures is promising application of the 
proposed HNB force sensors. Since the device is based on 
smart sensing with simple current monitoring to measure 
the force, any complicated external read-out devices are not 
required. We have been applied these sensors to 
characterize the mechanical properties of silicon nanowires 
and graphene with even smaller dimensions (Figure 2b). 
Visual tracking of the deformation is also promising to 
measure the force using HNBs in case of wet applications 
such as biological manipulation.  

Furthermore, tuning fork force sensors can be applied to 
reveal mechanical properties of the dynamic systems such 
as resonators based on thin membrane nanostructures. By 
incorporating with cryogenic or biological manipulation 
setup, it can also be utilized to measure the dynamically 
varying biological nanostructures.  
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Fig. 2.  Metal connector attached 3-D helical nanobelts and their 
electromechanical property characterization with two metal probes. (a) 
The piezoresistivity was characterized in the longitudinal tensile 
elongations. (b) mechanical property of silicon nanowire is characterized 
by helical nanobelts 
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Biological cells have several mechanical elements, such 
as the membrane and cytoskeleton (actin and intermediate 
filaments; microtubules) that define cellular mechanical 
properties, shape, and functions. Quantification of cell 
mechanical properties is not only important for understanding 
cellular structure and function but also useful for assessing 
cell quality. This abstract presents our recent work on 
characterizing mechanical properties of healthy mouse 
oocytes and those with compromised development 
competence during microrobotic cell injection (i.e., in situ).  

 

Cellular force measurement is a must for cell mechanical 
characterization. Macro-scale force sensors can be used to 
measure forces on zebrafish embryos (~1.2 mm) with a low 
force resolution (tens of micronewton), but are now 
applicable for characterizing smaller cells (e.g., ~100 μm 
mouse oocyte/embryo). Although silicon-based MEMS force 
sensors provide nanonewton force measurement resolution [1, 
2], they do not allow for an easy integration of the fragile 
MEMS devices and the micropipette. Previously reported 
PDMS post arrays [3, 4] can measure contraction forces of 
adherent cells; however, they do not permit mechanical 
characterization of suspended cells, such as mouse oocytes.  

 

This abstract presents a PDMS cell holding device and its 
application to in situ mechanical characterization of mouse 
oocytes. The device is used together with a visual tracking 
algorithm for resolving nanonewton-level cellular forces 
during microrobotic injection of mouse oocytes. We 
previously developed a large-sized PDMS device and applied 
it to measuring forces on zebrafish embryos (~1.2 mm) with a 
micronewton force resolution [5]. The study presented here 
focuses on miniaturizing the devices for smaller mouse 
oocytes (~100 μm), enhancing the force resolution to 
nanonewton, and using in situ obtained data to distinguish 
defective oocytes from healthy ones for better selecting 
oocytes in genetics and reproductive biology. 

 

Fig. 1 illustrates the working principle of the device.  
While the micropipette injects a mouse oocyte inside a device 
cavity, applied forces are transmitted to low-stiffness 
supporting posts. In real time, a sub-pixel computer vision 
tracking algorithm measures post deflections that are fitted 
into an analytical mechanics model to calculate the force 
exerted on the oocyte. Fig. 2 shows a SEM picture of the 
device, fabricated using standard soft lithography. The 
supporting posts are 45μm high and 12μm in diameter. 
Young’s modulus of the posts was calibrated via 
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nanoindentation to be 524.7±22.1 kPa (n=5). A computer 
vision algorithm was developed to track post deflections at 30 
Hz with a resolution of 0.5 pixel. The force measurement 
resolution was 2 nN. Fig. 3 shows an indented mouse oocyte 
and deflected posts that are tracked and labeled by circles. An 
analytical mechanics model (Fig. 4) was developed to map 
post deflections into cellular forces. 

 

The device was used within a microrobotic cell injection 
system. Oocytes obtained from aged mice often exhibit 
cellular defects, such as meiotic spindle defects causing 
chromosomal abnormalities and mitochondrial dysfunction. 
The purpose was to determine whether mechanical 
characterization can provide useful cues for distinguishing 
healthy and defective oocytes. In experiments, 20 oocytes 
from young ICR mice and 20 oocytes from old ICR mice 
were characterized during microinjection. Fig. 5 shows the 
collected force-deformation curves. Most of the curves of 
young and old oocytes separate themselves distinctly with a 
slight overlap of a few curves. Stiffness of the young and old 
oocytes (Table 1) was significantly different (p<0.001). 

 

SEM analysis of the zona pellucida (ZP - the outer 
membrane), showed that 80% of old oocytes have different 
ZP surface morphology (Fig. 6(b)) than young oocytes (Fig. 
6(a)). TEM imaging of ZP glycoprotein organization (Fig. 
6(c)(d)) indicated that old oocytes have a significantly lower 
(p<0.001) glycoprotein density (Table 1) than young oocytes, 
which translates into lower ZP stiffness in old oocytes. 
Fluorescence analysis of oocyte F-actin (Fig. 7) demonstrated 
that old oocytes have decreased F-actin (p<0.001) with 
subcortical region particularly lacking this cytoskeletal 
protein. Thus, structural differences of aged oocytes caused 
by altered distributions of ZP and F-actin likely contribute to 
the measured mechanical differences. These results 
demonstrate that technique can be useful for distinguishing 
healthy and defective oocytes during cell injection, without 
requiring a separate characterization process. 
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Fig. 1. Cellular force measurement using low-stiffness 
elastic posts during microinjection. 

 

 
 

Fig. 2. SEM image of the PDMS cell holding devices.  
 

 

Fig. 3. Indentation forces deform the mouse oocytes and 
deflect three supporting posts. Blue circles label the 
tracking results of post deflections. 
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Fig. 4. Injection force analysis. (a) Force balance on the cell 
under indentation. (b) Post deflection model. 
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Fig. 5. Force-deformation curves of young and old oocytes. 

 
 

Fig. 6. (a)(b) SEM images of (a) ‘spongy’ ZP surfaces of young 
oocytes and (b) compact and rough ZP surfaces of old oocytes. 
(c)(d) TEM images of ZP glycoproteins of (c) young oocytes 
and (d) old oocytes. C: cytoplasm.  
 

 
 

Fig. 7. F-actin staining images of (a) young oocytes and (b) old 
oocytes. Old oocytes have significantly less (p<0.001) F-actin 
than young oocytes. Green: F-actin. Blue: nucleus.  
 

Table 1. Experimental data of oocyte stiffness, relative density 
of ZP glycoproteins, and F-actin contents. 

 Young 
oocytes 

Old 
oocytes 

Stiffness (nN/μm) 6.4±1.3 
(n=20) 

3.3±0.9 
(n=20) 

Relative density of  
ZP glycoproteins (%) 

44.9±1.6 
(n=8) 

37.9±0.8 
(n=8) 

F-actin contents 
(fluorescence unit ×106) 

1.9±0.52 
(n=12) 

1.07±0.42 
(n=10) 

 

23



Observer-based estimation of weak forces in a nanosystem
measurement device

A. Voda and G. Besançon

Abstract— This paper presents an observer-based approach
for weak force measurement via AFM experiments: the idea
is to directly reconstruct the force to be measured, from the
cantilever deflection actually measured by an optical device and
some appropriate observer design. This design classically relies
on a dynamic model, which is here beforehand identified.
The proposed method is shown to be fairly efficient via
experimental illustrative results.

Index Terms— State observer, model identification, force
measurement, AFM, experimental set-up.

I. INTRODUCTION

Atomic Force Microscopy (AFM) is a powerful
measurement tool to detect weak forces at a very low
scale. Since the first apparatus designed by G. Binnig and
H. Rohrer in 1986 ([Binnig et al.(1986)Binnig, Quate, and
Gerber]), numerous operation modes have been developed
to image a sample and to extract various local physical
properties. However, the heart of the device remains roughly
the same: it consists of a microlever bearing a tip at its
end, on which a force exerted by a sample is applied.
Additional excitation forces can be implemented, through a
bimorph for instance, to run specific measurement (dynamic
AFM). Microlever motion, generated by external force, is
acquired through various techniques (spot laser deflection,
interferometer, piezoresistive microlever, and so on) and
determines the raw signal of an experiment. It is connected
to the force within microlever mechanical response: as a
result, force signal can strongly differ from it. The method
proposed in this paper aims at addressing the issue of force
reconstruction via observer strategy.
Sample analysis in biology, chemistry and materials physics
require more powerful tools to increase amounts of data to
be processed. For instance, biological processes, such as
DNA replication, protein synthesis or drug interaction, are
largely governed by intermolecular forces. As AFM has the
ability to measure weak forces in the sub-nanonewton range,
this makes it possible to quantify the molecular interaction
in biological systems such as a variety of important ligand-
receptor interactions. In addition to measuring binding
forces, AFM can also probe the micromechanical properties
of biological samples, since it can observe the elasticity
and the viscosity of samples like live cells and membranes.
In this context, force estimation requires efficient methods
to improve sample analysis. Numerous trade-offs have
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A. Voda and G. Besançon are with Control Systems Department1 GIPSA-

lab, Grenoble University, UMR 5216, BP 46 38402 Saint-Martin d’Hères,
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to be done when selecting microlever model, scanning
method and its relative parameters. Force reconstruction
may improve analysis ability of AFM device by reducing
scanning time, and it can offer a more comprehensive
control of the system. Such a strategy can further extend to
other relative fields, from manipulation of nano-objects to
inertial sensors, as they arise in nanosciences.

¿From a system viewpoint, the problem of force
measurement can be considered as a problem of internal
information reconstruction, or, in a state-space formalism, a
problem of observation ([Kwakernaak and Sivan(1972)]).
The present paper thus recasts the problem of force
measurement in that spirit, focusing on a very simple
formulation for the sake of illustration. The purpose is
then to present and use some appropriate experimental
set-up with the purpose of experimentally illustrating and
validating the implementation and performances of the
proposed methodology.

The considered AFM set-up and measurement problem is
thus first explained in section II. The proposed observer
approach is then described in section III. Some experimental
validating device and corresponding observer-based force
reconstruction results are finally presented in IV, while
some conclusions end the paper in section V.

II. CONSIDERED AFM MODEL AND FORCE
MEASUREMENT PROBLEM

The basic AFM principle can be understood from figure
1 hereafter: it is basically made of a cantilever bearing a
tip, which is approached to a sample. Both the cantilever
and the sample can be appropriately positioned via a
couple of drivers. The deflection of the lever end, denoted
by z, is generated by forces appearing between the tip
and the sample. Numerous operation modes have been
implemented to run sample analysis: most of them consist
in keeping the mechanical state of the lever constant by
appropriately changing tip sample distance while scanning
sample surface. This operation makes it possible to get
surface topology. These mechanical states depend on tip
sample distance and can be the deflection in case of
contact AFM, amplitude deflection or resonance frequency
in case of dynamic mode (Tapping, AM/FM AFM) (see
[Albrecht et al.(1991)Albrecht, Grütter, Horne, and Rugar],
[Giessibl(2003)], [Garcı́a and Pérez(2002)]).
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Fig. 1. Considered AFM setup. The microlever (Mikromash
CSC37 Ti-Pt lever B) has a conductive coating on both side. It
is located at a distance d ≈ 1 µm from the gold sample surface.
A bias voltage is put on the tip with respect to the sample, thus
generating an electrostatic force Fe on it. Microlever motion X
is picked up through a laser beam deflection system.

In addition, various physical properties can be drawn from
the interaction of the tip with the sample to be analyzed:
electrostatic, magnetic, thermal or mechanical properties.
Lever motion resulting from the interaction of the tip with
the sample provides the signal to be processed by the AFM
operation mode. In this context, force estimation is mostly
not a prerequisite. The problem we consider here is that of
measuring the force between the sample and the tip via the
measurement of deflection z.

First, a description of the system requires mechanical re-
sponse modeling of the lever undergoing a force F at its end.
Then various noise sources are added to account for signals
experimentally acquired. Starting from the Euler-Bernouilli
theory of Beam (e.g. as in [Cleland(2004)], [Clough and Pen-
zien(1993)]), it appears that the dynamical behaviour of the
whole lever can be represented by a set of harmonic vibration
modes having different resonance frequencies. Reducing the
lever motion to the first flexural vibration mode proved to
be a convenient and relevant approximation, when working
at low frequency, below and around the first resonance
frequency. The discrepancy resulting from not taking into
account upper modes is estimated to be lower than a few
percent, as it will be shown in the system identification
section. As a result, we get a model of the following classical
form:

mz̈(t) + fż(t) + kz(t) = F (t, d) (1)

where m,k, f respectively stand for the effective mass
of the cantilever and the first mode stiffness and friction
coefficients, while F is the force between the tip and the
sample. The observation method which is advocated here
can actually include several modes in estimating the lever
motion: this capability has to be used when working on
higher frequency signal. However the present paper aims at
presenting the method principle and is therefore based on a
simpler model.

In addition to the classical representation (1), the coupling of
the device with the environment depicted as a thermal bath
at temperature T = 300 K results in a thermo-mechanical
force noise further affecting the dynamics, denoted by fn. It
is related to the stochastic part of the Langevin force, which
also includes the damping force −fż acting on the system.
Statistic physics requires force noise density Sf to be
related to damping coefficient f , so that the elastic energy
or kinetic energy of the first mode are equal to (kbT )/2
(with kb the Boltzmann constant = 1.3806× 10−23J.K−1).
As a result the force noise density, which is assumed to
be white, can be expressed as Sfn = 4kbTf . Then the
mechanical response of the lever acts as a resonant filter on
the thermal mechanical force noise. In this context, the lever
motion can be broken down into component z generated
by force F and component zn generated by force noise
fn, which corresponds to a stochastic motion with spectral
density Szn :

Szn = |H(ω)|2Sfn (2)

where |H(w)| accounts for the mechanical susceptibility
of the lever in the frequency domain (i.e, force to position
transfer function).

The motion sensor and various following electronic ele-
ments of the detection system incorporate some additional
noises w on the lever position. Finally the measurement y
can be expressed as :

y = z + zn + w (3)

Figure 2 illustrates typical force noise density that can
be acquired with the Atomic Force Microscope used in
experiments presented in this paper. It consists of detection
noise w, which forms a background at a value around
1 pm2/Hz, and thermo mechanical noise zn which has a
peak dominant around the resonance frequency ωr.

Fig. 2. Noise spectral density on Asylum MFP 3D Atomic Force
Microscope, at room temperature.

The main purpose in this context is to recover as closely as
possible the interaction force F from direct measurement y.
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III. PROPOSED OBSERVER APPROACH

In view of the previous problem formulation, the point
here is to summarize how a solution can be obtained via
observer techniques. This provides an alternative approach
to the most common use of AFM devices.
It can be noticed that such an approach can already be
found in few recent references, either with the idea to
reconstruct z, ż and from this detect F (as in [Sahoo
et al.(2005)Sahoo, Sebastian, and Salapaka]), or with the
purpose of direct reconstruction of F together with z and ż
(as in [Besançon et al.(2004)Besançon, Voda, and Chevrier],
[Besançon et al.(2007)Besançon, Voda, and Chevrier]).
In the present paper, we will focus on this second approach,
and illustrate its performances on actual experimentations, in
the continuity of those former formal suggestions.
In short, the idea consists in neglecting the force dynamics,
either because the considered force is indeed not varying, or
because its reconstruction will be fast enough. In both cases,
this means that F can be assumed to satisfy: Ḟ = 0.
Then variables z, ż and F of basic equation (1) can be
considered as state variables of a vector x, for a state space
representation only driven by thermo-mechanical noise fn

on the one hand, and detection noise w on the other hand,
as follows:

ẋ =




0 1 0
−k
m − f

m
1
m

0 0 0


x +




0
1
m
0


 fn

:= Ax + Dfn

y = ( 1 0 0 ) x + w
:= Cx + w

(4)

On this basis, (A, C) clearly being observable, a standard
state observer can be designed in order to recover all state
variables, namely an observer of the form:

˙̂x = Ax̂−K(Cx̂− y) (5)

where K is to be appropriately chosen.
In a deterministic framework, it can be chosen according to
any pre-specified set of observer poles, but with no guarantee
w.r.t. the noises. In a stochastic framework instead, the well-
known Kalman observer provides an optimal choice for K,
in the sense of minimizing the mathematical expectation
E[(x̂(t) − x(t))T (x̂(t) − x(t))]. This can be done provided
that noise variances are known and used in the gain com-
putation. However, it can be noticed that an admissible
constant gain can be obtained in this context only if (A,D)
is stabilizable, which is not true in (4).

In practise, D can be changed into




0 0
1
m 0
0 ε


 for some ε

to be chosen, assuming some additional possible fluctuations
in the force profile.
Then by playing on this parameter ε for instance, one can
tune the observer convergence rate w.r.t. the noise attenua-
tion.
This observer approach has been tested on the experimental
set-up proposed for this purpose, as described in previous

section. In practise, the force to be reconstructed is simulated
via an electrostatic action, driven by a voltage which can be
used as a reference. For this reason, the observer performance
will be rather validated by voltage estimation, relying on a
force model w.r.t. this voltage, injected in model (4).
Some experimental results in that respect are reported in next
section.

IV. EXPERIMENTAL APPLICATION AND VALIDATION OF
THE PROPOSED OBSERVER STRATEGY

In order to experimentally validate the proposed force
measurement approach, in figure 1, a controlled voltage V is
introduced between the tip and the sample so as to produce
an electrostatic force. In this way, the setup here described
makes it possible to monitor non contact force applied on
the lever. The corresponding model between the tip and
the force (4) has thus been experimentally identified, and
a corresponding observer (5) has been designed.

A. Identification of microlever physical parameters

The experiment is carried out with an Asylum MFP-3D
microscope. As shown in Fig. 1, a microlever is brought
within about 1 µm from a gold flat surface. It corresponds to
model Mikromash CSC37 Ti-Pt lever B, and has be chosen
for its low stiffness (k=0.4 N/m) and for the conductive
layer coated on it.

The microlever and the surface are forming a capacitance
C(d), that depends on the distance between them d. When
applying a bias voltage V , an electrostatic force Fe, that is
attractive, arises on the probe. It is described by:

Fe =
1
2
C ′V 2 (6)

where C ′ is the capacitance derivative with respect to tip
sample distance d. As a result, tuning the bias V makes it
possible to easily monitor the force intensity. As explained
in section II, the probe is described as an harmonic oscillator
with mass m, stiffness k and damping coefficient f . It
should be noticed that those parameters depend on how
the force Fe is applied. Resonance frequency ωr =

√
k/m

and damping rate γ = f/m remain nevertheless the same:
they can be identified from motion noise spectral density or
force tuning diagram.

In the frequency domain, the mechanical response is
thus described by:

H(ω) =
Z

F
=

1
m(ωr

2 − ω2 + jγω)
(7)

Motion detection calibration is performed using force-
distance curve, that consists in putting into contact the tip
with the sample surface and in extending the sample stage
piezo translator Z towards it: the microlever deflection is
then equal to the piezo translator extension. Sensitivity
α = Z/Vp is estimated at 188 nm/V (in the range 100-200
nm/V or the corresponding value), where Vp is the voltage
delivered by the photodiode in figure 1.
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Fig. 3. Experimental configurations. Connection (a) is used for
mechanical response acquisition through the lockin. Connection (b)
enables the force acquisition to be recorded through an ADC linked
to a PC.

In our experiment, it appears more convenient to recon-
struct directly bias voltage V than force Fe, so that its
estimation (V̂ ) can be directly compared to the ”reference”
V .
In order to implement an observer-based method, the re-
sponse G(ω) = Z/V 2 has rather to be identified. Using
Eq. (6) and Eq. (7), it follows:

G(ω) =
C ′

2m

1
ωr

2 − ω2 + jγω
(8)

Flowchart (a) of Fig. 3 describes the experimental setup. A
sinusoidal shape voltage V = V0 sin(ωt) is put between the
tip and the sample, thus generating an electrostatic force Fe

proportional to V 2.

V 2 = V 2
0

1− cos(2ωt)
2

(9)

The 2ω frequency component is scanned from 1 Hz to
100 kHz and then demodulated by a lockin amplifier. The
mechanical response is finally plotted and compared to that
obtained with model (8) in Fig. 5. Fitting parameters of
Eq. (8) are found to be given by:

ωr = 1.5215× 105rad/s
γ = 1570rad/s,

C ′

2m
= 1.27× 109nm.s2/V 2

The discrepancy between data and model is lower than 5 %
(and could be reduced by introducing mechanical response
background associated to higher vibration modes). As a
result, this analysis validates the damped harmonic oscillator
as the model that well captures the microlever mechanical
behavior.
The resulting model can then be re-written as (4) and used
for observer design.
The corresponding electrostatic force measurements are
carried out following flowchart (b) of Fig.3. Rectangular
shape voltages are applied on the tip, thus causing the lever

to deflect as shown in Fig. 4. An Analog Digital Converter
(ADC) samples the microlever motion signal at 1 MHz.

Fig. 4. Typical cantilever deflection (bottom) versus bias voltage (top), on
Asylum MFP 3D Atomic Force Microscope, using a cantilever Mikromash
CSC37 Ti-Pt lever B.

The deflection signal is here disturbed by noises,
mechanical resonance phenomenon and various drift
(mechanical or electrical). However, the latter are here
neglected because measurement time is small.
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Fig. 5. Mechanical response of the lever, on Asylum MFP 3D Atomic
Force Microscope, using a cantilever Mikromash CSC37 Ti-Pt lever B.

B. Observer-based force reconstruction

Let us present now some observation results obtained in
the context previously described. Two cases will be more
particularly discussed: a low frequency problem on the
one hand, and some higher frequency case on the other hand.

1) Step change of the force: The first experiment reported
here thus corresponds to a single step change in the applied
voltage, resulting in a transient response of the cantilever
presented in figure 6.
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On this basis, an observer can be designed which achieves a
very good noise filtering in a few milliseconds, as illustrated
by the voltage reconstruction shown on figure 7.
Notice that this corresponds to the estimation of a force
with a magnitude of few nanoNewtons.
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Fig. 6. Measured cantilever deflection (top) vs applied voltage (bottom) -
step case. Asylum MFP 3D Atomic Force Microscope is used.
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Fig. 7. Observer-based estimated voltage (top) and estimated force (bottom)
- step case. Asylum MFP 3D Atomic Force Microscope is used.

2) Fast step change of the force: In case of faster force
variations (here voltage variations), for instance up to 1kHz
step variations - as considered for a second experiment, this
observer will be limited.
A faster one can yet be designed, still achieving a fairly good
voltage (and force) reconstruction.

V. CONCLUSION

In this paper a full observer approach towards force
measurement from AFM collected data has been developed,
including a specific AFM set-up description for such an
approach, the corresponding model identification, and some
possible (Kalman) observer design. This methodology is
illustrated by very promising experimental results, and will
be pushed forwards in future developments.
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[Besançon et al.(2007)Besançon, Voda, and Chevrier] G. Besançon,
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Abstract—Optical based force sensors can provide the 
desired resolution and maintain relatively large sensing ranges 
for cell manipulation and microneedle injections via a force 
sensing method that uncouples the conflicting design 
parameters such as sensitivity and linearity.  Presented here is a 
mechanism approach for enhancing the performance of a 
surface micromachined optical force sensor. A new design is 
presented which introduces a special mechanism, known as the 
Robert’s mechanism, as an alternate means in which the device 
is structurally supported. The new design’s implementation is 
achievable using an equivalent compliant mechanism. Initially, 
an analytical set of pseudo-rigid-body-model equations were 
developed to model the compliant design. A more accurate 
model was then constructed using FEA methods.  The geometric 
parameters of the compliant Robert’s mechanism were then 
optimized to obtain a sensor with improved linearity and 
sensitivity.  Overall, the force sensor provides higher sensitivity, 
larger dynamic range and higher linearity compared to a 
similar optical force sensor that uses a simple structural 
supporting scheme.  In summary, the effectiveness of using a 
mechanism approach for enhancing the performance of MEMS 
sensors is demonstrated.  The expected impact is to improve 
biomedical experiments and help further advance research that 
can improve quality of life. 

I. INTRODUCTION 

wealth of research has been conducted in 
microelectromechanical systems (MEMS) to develop 

physical sensors and actuators.  As a consequence, MEMS 
technology has provided great advances in the area of force 
sensing.  The miniaturization has allowed sensors to be 
packaged in sub-cubic millimeter volumes.  This opened the 
door for the placement of sensors in previously impossible 
situations and locations.  For diverse areas in biomedical 
research and clinical medicine, the versatility of micro-
sensors and actuators is enabling ever-greater functionality 
and cost reduction in smaller devices for improved medical 
diagnostics and therapies. 

A conventional force sensor was developed by Zhang et 
al. [1]. The sensor is integrated with a microneedle to be able 
to measure injection forces.  It is a 1 DOF sensor using a 
linear optical encoder.  The authors of [1] report a resolution 
of less than 1 µN and a range of about 10 µN.  The general 
operating principle of this device is common to many force 
sensors.  That is they measure the displacement of a 
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compliant structure with a known stiffness and calculate the 
force required to induce that displacement.  Where these 
force sensors vary is the detection scheme employed to 
determine the displacement.  Another common method is 
capacitive sensing.  Sun et al. [2] have developed a 
capacitive force sensor to measure forces up to 490 µN with 
a resolution of 0.01 µN in x, and up to 900 µN with a 
resolution of 0.24 µN in y.  

Both of these devices use simple compliant beams to 
support the sensing element of the sensor.  There have been 
attempts to use more complicated compliant mechanisms in 
place of simple beams to improve sensor characteristics, 
such as linearity, resolution and dynamic range [3-6].  A 
compliant mechanism, termed “XBob”, was developed in [7] 
using a combination of Robert’s mechanisms to achieve 
straight-line motion.  Presented herein, a compliant 
mechanism comprised of Robert’s mechanisms is introduced 
as a design basis for replacing the simple beams in the above 
device of Zhang. An optimization was conducted to improve 
the performance characteristics of the sensor.  

II. ENHANCEMENT OF OPTICAL FORCE SENSOR 

A. Prior Art: Optical Force Sensor 

The MEMS force sensor presented in [1] was fabricated 
using a surface micromachining process at the Stanford 
Nano-fabrication Laboratory.  The device is an optical force 
sensor based on a diffractive linear encoder.  It consists of 
two constant period gratings.  The scale grating is fixed to 
the substrate, while the index grating is suspended above the 
fixed grating by four beams.  The two gratings are in 
alignment when no external force is applied to the index 
grating.  For the purpose of characterizing microinjection 
forces, a microinjection needle is monolithically 
incorporated into the index grating.  Any force applied to the 
needle causes the index grating to displace. Given a 
minimum detectable displacement, defined by the optics and 
photodiodes, the spring constant determines the sensitivity of 
the sensor.  The more compliant the sensor, the smaller the 
minimum changes in force it may register. 

The index grating supported by four beams was modeled 
as having two beams that pass through the index grating 
which act as springs.  The beams act in parallel, therefore the 
equivalent spring constant of one beam may be determined 
and multiplied times two to give the overall spring constant 
of the force sensor.  The boundary conditions of the beam 
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are set up as both ends fixed and center loaded.  The fixed 
ends are anchored to the substrate and the index grating 
displacement is equivalent to the center applied load 
displacement. Using the optics to precisely determine 
displacement and the calculated spring constant, the 
magnitude of the force acting on the sensor can be found.  
For small tip deflections, bending is the dominating mode 
and the relationship between force and displacement can be 
considered linear. The linear operating range for this sensor 
is about 12 µm. These results were obtained using a 2-D 
non-linear elastic finite element analysis (FEA) model 
generated using ANSYS® software. 

B. Compliant Mechanism Enhancement 

Using a mechanism approach to enhance the dynamic 
range and linearity of the sensor, a compliant mechanism is 
used in place of the simple beams to support the index 
grating of the prior sensor design.  The compliant mechanism 
is based on a Robert’s four-bar mechanism, shown in Figure 
1.  Using a design that Hubbard et al. [7] conceived of, a 
total of eight Robert’s mechanisms are combined to form a 
new special mechanism with straight-line motion 
characteristics.  A 3D model of the top layer of device is 
shown in Figure 2. 

1) PRBM Modeling: The Pseudo-Rigid-Body-Model 
(PRBM) is a concept used to model the force-displacement 
relationships of a compliant member using an equivalent 
rigid-body mechanism with the compliance modeled as 
springs in the joints [7].  For the compliant model, the 
flexible segments are considered to have boundary 

conditions:  fixed where attached to the ground or index 
grating and fixed-guided where attached to the middle rigid 
member as depicted in Figure 3. 

2) FEA Modeling: A finite element analysis (FEA) is 

conducted to validate the PRBM model.  The FEA also 
captures any nonlinear phenomenon that may occur, which is 
not possible using the PRBM alone.  The model used in the 
FEA is shown in Figures 4 and 5.  All beam elements not 
representing compliant members were given a larger width 
(20 µm) than the flexible links so that they would exhibit 
rigid behavior compared to the flexible links.  The same 
value of 270 GPa was used for the Young’s modulus and 
0.24 for Poisson’s ratio.  All force-displacement curves were 
generated by a static analysis of 10 equivalently spaced 
displacement load steps.  In order to verify that 10 load steps 
provided enough data points for accurate results, a test case 
was run.  The test case held everything constant and ran the 
simulation with 50 load steps and 10 load steps.  It was 
found that the selection of 10 data points did not omit any 
significant trends when compared to the 50 load step case.  
The displacement input was applied to the center of the rigid 
section, which represents the index grating.  The reaction 
force at all fixed nodes were tabulated for each load step. 

C. Design Optimization 

For this device, nitride is the material of choice due to its 
optical properties.  The thickness of the nitride is also pre-
selected to achieve desirable optical properties.  This leaves 
the length of the links, the initial angle of the link 2, and the 
width of the compliant member as available design variables 
for parameter optimization.  For the design optimization, the 
objective function was selected to maximize full scale 
linearity and minimize the overall stiffness, subject to 
constraints and boundaries.  This is a dual objective problem 
where initially each objective was weighted equally (α = 
0.5).  This can be stated mathematically as follows: 

 
 

 
Fig. 1.  A compliant version of the Robert’s mechanism. 

 

 
Fig. 2.  Solid 3D model of final design: top nitride layer shown  

(not to scale). 

 
Fig. 3.  Fixed-guided beam:  (a) flexible member, (b) pseudo-rigid 

body model equivalent. 
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The lower bound of 1 µm was placed on all length and 

width variables because this is a minimum feature size that 
can be fabricated using most common surface 
micromachining.  The upper bound on the link lengths was 
set to keep the design within a practical size footprint; 
something comparable to the current force sensor.  Therefore 
a value of 300 µm was selected.  The upper bound of the 
width was also selected somewhat arbitrarily.  However, it 
must remain within the restraints that require these links to 
exhibit compliant behavior relative to the adjacent rigid 
links. 

To prevent the optimization from yielding impractical 

designs, the initial angle 2oθ  was constrained so that 

resulting configurations would exhibit geometries that would 
not interfere with the index grating and would yield desirable 

link 2 orientations.  Initially, the domain for 2oθ  was from 

0° to 90°.  Configurations with angles below 20° did not 
violate any of the specified constraints, but did cause errors 
for the FEA simulation.  Configurations with angles in this 
range resulted in mechanisms with force-displacement 
relationships that could not be handled by the FEA nonlinear 

solver.  For this reason the lower bound on 2oθ  was raised to 

20°. Another constraint declares that the configurations must 
not violate any physical kinematic constraints.  In particular, 
a constraint is introduced that prevents links from occupying 
the same space at the same time and prevents any binding or 
interference. 

III.  DESIGN RESULTS 

The results of the PRBM and FEA analysis and design 
optimization show a vast improvement which becomes 
apparent when the force-displacement curves are plotted 
together, as in Figure 6.  In the design of the 4-beam sensor, 
nonlinearities begin to dominate after only 15 µm of 
displacement.  The new Robert’s design remains virtually 
linear throughout the entire displacement range (in plot of 
Figure 6 it appears to be a horizontal line due to the scale of 
the nonlinearities of the 4-bar sensor).  Therefore the force 
can be simply calculated using the pre-determined spring 
constant and computed displacement.  Based on the analysis 
presented, the force values obtained with the new design will 
be accurate over the specified full range of motion.  The 4-
beam design will only exhibit a linear relationship if the 
sensor operates up to 10 µm, after which the sensor will be 
producing erroneous force values or would require nonlinear 
calibration curves.  

Fig. 4.  Finite element 2D model of compliant mechanism  
in unloaded state. 

 
 

Fig. 5.  Finite element 2D model of compliant mechanism  
with load applied. 
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Fig. 6.  Comparison of FEA results for Robert’s and 4-beam designs. 
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IV.  SUMMARY AND CONCLUSIONS 

This work demonstrated the effectiveness of using a 
mechanism approach for enhancing the performance of a 
MEMS sensor.  The work entailed the re-design of a surface 
micromachined optical force sensor.  The sensor uses an 
optical diffraction sensing scheme to resolve forces induced 
from input displacements.  This device is geared toward cell 
manipulation and microinjection.  Focusing on the structural 
support elements of the sensor, a Robert’s mechanism was 
selected to replace the current simple beam structure.  The 
Robert’s mechanism was chosen because of its linear motion 
and force characteristics.  This mechanism was combined in 
series and parallel to form another mechanism with desirable 
traits.  The geometric parameters of the Robert’s mechanism 
were optimized to obtain a sensor with improved linearity 
and sensitivity.  The presented techniques from this research 
could also be used to pursue designs for other applications.  
The Robert’s mechanism is designed to be implemented as a 
compliant mechanism.  This allows the sensor to be 
monolithically fabricated via surface micromachining and 
bulk etching technologies. 
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