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Robust feedback control for automated
force/position control of piezoelectric tube based

microgripper
Mounir Hammouche, Philippe Lutz, Member, IEEE, and Micky Rakotondrabe, Member, IEEE

Abstract—This paper addresses the problem of automated
grasping tasks using a piezoelectric microgripper, based on
two piezoelectric tube actuators, for an accurate and rapid
micro/nano manipulations. For this matter, we propose a strategy
to control the position of one actuator and a hybrid approach
that switches between force and position control of the second
actuator. However, the nonlinearities and the uncertainties that
characterize the piezoelectric actuators and the different proper-
ties of the manipulated objects make the control of such system
not a trivial task. To handle this problem we propose to model
the microgripper system by linear interval system, that embraces
the parameters uncertainties, and synthesize a robust controller
to control the interval system based on the classical output-
feedback control design. The robust control synthesis consists
on the search of robust gains for the controller that ensure the
inclusion of the eigenvalues of the interval closed-loop system in
a desired region of the complex plane. The effectiveness of the
control strategy is illustrated by a real experimentation where
the position and the manipulation force control show to maintain
the desired performances under system uncertainties.

Index Terms—Robust output-feedback, Interval models, SIVIA
(Set Inversion via Interval Analysis), Microgripper, Automated
pick-and-place, Force/Position control, Piezoelectric actuator.

I. INTRODUCTION

THE use of piezoelectric actuators in the conception of
micro/nano-manipulation systems has been generating

considerable interest in the last years due to their high
speed (large bandwidth up to 1kHz), high precision (sub-
nanometric), high resolution, and multi-degrees of freedom
possibility [1], [2], [3], [4]. Recently, the micro-robotic com-
munity has taken interest in developing microgrippers systems
based on two collaborative piezoelectric actuators with can-
tilevered structure that allow scientists and engineers to sys-
tematically perform micro/nano manipulations such as pick-
and-place tasks. Several prototypes of microgrippers have been
developed to manipulate micro/nano objects with different
shapes and characteristics [1], [3], [5], [6]. However, the
control of piezoelectric microgrippers highlight the difficulty
in attaining the desired operation efficiency due to the actuators
nonlinearities (hysteresis, time varying parameters, creep, etc),
the sensitivity to the ambient conditions and the lack of
adequate sensors in micro-world. The former characteristics
impact considerably the approximated model of the actuators
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and induce a change in their resonant frequencies. Further-
more, in micro/nano manipulation, the manipulated objects
are usually so fragile and if the desired performance (over-
shoot and rapidity) are not well respected under the above
mentioned factors, the manipulated object may be damaged.
Actually these factors must be taken into account by including
enough robustness to the controller otherwise they may lead to
degradation of the closed-loop performance or the instability
of the overall system.

For the success of micro-objects manipulation, in addition
to the necessity of the robust controllers, the manipulation
process should be automated with less human intervention to
guarantees repeatable, stable and accurate micro/nano manipu-
lation tasks. Indeed, the automated control of these microgrip-
pers are usually achieved by controlling on position one of the
two cantilevers while controlling on force the second one to
maintain the manipulated object and to avoid the deterioration
of the object as well as the actuator [1], [2], [3]. However,
the main problem of this control strategy is that the second
actuator (the cantilever controlled on force) must be initially in
contact with the manipulated object to prevent generating high
control input when the object is not in contact. For this reason
we propose, in this paper, to control the second cantilever
both on position and on force and use a decision mechanism
to switch between them when the actuator is in contact.
Moreover, the control on position of the second actuator gives
further possibility to apply the dynamical release strategy to
perform an accurate releasing of the micro/nano object in
the desired place in the presence of adhesion force between
the cantilever and the micro/nano object [7]. The dynamical
releasing strategy can be done by forcing both cantilevers of
the microgripper to move simultaneously with high speed in
the opposite direction of the micro/nano object.

Until now, some robust control schemes have been designed
to make the piezoelectric microgrippers track automatically a
certain trajectory for manipulation tasks [1], [5], [8], [9]. In
[5], khadraoui et al propose an automated pick-and-place with
interval-based controller design to control robustly the force
and the position of the microgrippers based on the inclusion
theorem [10]. Moreover, the interval-based controller design
proposed by khadraoui et al consists on modeling the piezo-
electric actuator by bounding the parameters uncertainties by
intervals using a transfer function representation. However, the
proposed interval-based approach with transfer function rep-
resentation was not well adapted to multivariable systems. For
that matter we focus our attention on the interval state-space
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models using a regional pole assignment technique to provide
a guaranteed stability margin and a desired performance with
low-order controllers using the state/output-feedback design.

The robust controller synthesis for a class of interval sys-
tems with state-space representation has been considered in
several works [11], [12]. Actually, the previous works are
focused on placing the coefficients of the system’s closed-
loop characteristic polynomial within a desired closed-loop
interval characteristic polynomial, which makes them man-
ageable by manual calculation in the case of simple problems
whilst the computational complexity grows quickly with the
number of free design parameters and with the number of
uncertain specifying parameters. Furthermore, only the degree
of stability of the closed-loop system with state-feedback was
addressed and no performances measure was discussed. As it
is not always that all states of the system can be obtained, we
restrict the analysis to robust output-feedback design which
is not addressed in the previous works that deal with interval
systems.

In this paper, the modeling, the robust force/position con-
trol design, and the automation of the grasping tasks of a
microgripper, that consists of two piezoelectric tube actua-
tors, are addressed. Foremost an interval approach is adopted
to approximate the voltage-force/voltage-position models by
interval state-space models that embrace the uncertainties
of the actuators, the sensitivity to the ambient conditions,
and the characteristics of the different manipulated objects.
Furthermore, an algorithm based on Set Inversion Via Interval
Analysis (SIVIA [13]) combined with interval eigenvalues
computation is proposed to synthesis robust force and position
controllers. Finally, an automated control strategy for pick-
and-place tasks that uses the introduced robust feedback con-
trollers design, and which also contains a decision mechanism
to switch between the two force and positions controllers, is
proposed and validated experimentally.

II. INTERVAL ANALYSIS AND MATRIX THEORY
PRELIMINARIES

A real interval matrix is a matrix in which all the elements
are interval numbers or belongs to a specified interval [14].
Furthermore, an interval matrix is also defined as a family of
matrices:

A := [A,A] =
{
A ∈ Rn×n; A ≤ A ≤ A

}
(1)

where A, A ∈ Rn×n, A ≤ A being given matrices and the
inequality being considered element-wise, i.e. Ai,j < Ai,j for
all i, j.

A. Eigenvalue computation

The eigenvalue set Λ(A) corresponding to A is defined as
the set of all eigenvalues overall A ∈ A, that is [15],

Λ(A) = {λ+ iµ | ∃A ∈ A, ∃x 6= 0 : Ax = (λ+ iµ)x)} (2)

Some interval matrices have symmetric interval matrices as
subclass. In such a case, the symmetric interval matrix AS

corresponding to interval matrix A is defined as the family of
all symmetric matrices denoted As in A, that is,

AS =
{
A

S

∈ A
}

(3)

It is worthy that a real symmetric interval matrix A
S ∈

IRn×n has n interval eigenvalues which are real.
The recent advances on interval analysis computation have

provided a new opportunity to estimate the eigenvalues of
interval matrices. For example, Deif [16] and Kolev [17]
proposed their exact bounds under some hard assumptions
[18]. A cheap formula (easily computed) for an enclosure is
proposed by Rohn [19] for symmetric interval matrices class.
Rohn’s result was extended to generalized interval matrices by
Hladík [18]. Hladík’s formula gives a unique interval in which
all eigenvalues are bounded. Furthermore, other interesting
method for interval eigenvalues computation is the vertex
approach [20], [21]. The later is based on the calculation of
all exposed edges of interval matrix and the convex hull of all
roots of possible characteristic equations.

III. ROBUST CONTROLLER DESIGN USING
INTERVAL ANALYSIS

In this section we propose a robust output-feedback design
for interval state-space systems with regional eigenvalues
assignment technique that will be used later to control the
piezoelectric actuator on position and on force.

A. Overview of interval output-feedback design

The robust output-feedback control problem is among the
most important open questions in control engineering [22].
The objective of the robust output-feedback, in this work,
is to find the feedback matrix gain K such that the closed-
loop system meets some transient performances specifications
under system uncertainties described by an interval system. In
other word, the designed controllers are robust in the sense
that all the eigenvalues of the interval closed-loop system are
clustered inside a desired region of the complex plane.

Consider a linear Multi Input Multi Output interval uncer-
tain system described by the following interval state-space
equation: {

ẋ(t) = Ax(t) + Bu(t) ;

y(t) = Cx(t)
(4)

where x ∈ Rn, u ∈ Rm, y ∈ Rp, A ∈ IRn×n,
B ∈ IRn×m, and C ∈ IRp×n. The matrices A, B, C are
unknown but bounded by elements lying in known upper and
lower bound; i.e. A = [A,A], B = [B,B], and C = [C,C].

Let us assume that the pair A, B of the model (4) is
controllable in the sense of the definition of Smagina Y,2002
[11]. In simple output-feedback model, the linear output-
feedback control law is presented by:

u(t) = Ky +Nr(t). (5)

where K is the output-feedback gain, N is the feedforward
control gain, and r(t) is the reference input.
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In order to eliminate any steady-state offset that may occur,
a compensator must be added to the closed-loop system. The
static feedforward gain (DC-gain) N is not the ideal solution
in the case of interval system because it always creates a non-
null steady-state error. For this purpose we propose to use the
integral compensator. It always ensures a zero error tracking
control. The proposed control law is therefore given by:

u(t) = kyy + ξ(t)Ki (6)

where ξ(t) is the integral of tracking error (i.e. ξ̇ = r(t)−y(t)).
The output-feedback control law can be presented by (n+1)

dimensional augmented state vector formed by the state vector
x(t) and the integrator variable ξ(t). The state equations for
both ẋ(t) and ξ̇ are consequently:

ẋ(t) = (A + BKyC)x(t) + BKiξ(t)

y(t) = Cx(t)

ξ̇(t) = r(t)− y(t) = r(t)−Cx(t)

(7)

From (7), the augmented state-space model is yielded:(
ẋ(t)

ξ̇(t)

)
=

(
(A + BKyC) BKi

−C 0

)
︸ ︷︷ ︸

(
x(t)
ξ(t)

)
+

(
0
1

)
︸ ︷︷ ︸ r(t)

[Aaug−cl] [Baug−cl]

y(t) =
(

C 0
)︸ ︷︷ ︸
(

x(t)
ξ(t)

)
[Caug−cl]

(8)

B. Problem formulation using Set-Inversion

The problem of robust output-feedback control can be out-
lined by finding the gain matrix [K] (with [K] = [[Ky] [Ki]])
that assigns the system eigenvalues to an arbitrary set taking
into account the uncertainty of the interval system. That is, the
problem consists in finding the interval parameters [K] of the
closed-loop system such that the inclusion eq.9 is satisfied.

eig
[
Aaug−cl([A], [B], [C], [K])

]
⊆ ΩDesired region (9)

where Aaug−cl is the augmented closed-loop matrix of the
system (8) and ΩDesired region is the desired region for the
interval eigenvalues situated in the left-half of the complex
plane.

This problem can be converted into a set-inversion problem
which can be solved easily using inversion algorithms. A set
inversion operation consists to search the reciprocal image
called subpaving of a compact set [14]. In our case in order to
solve this set inversion problem, we propose to adapt the Set
Inversion Via Interval analysis (SIVIA) algorithm, introduced
by Jaulin in 1993 [13], that we will call the recursive SIVIA-
based algorithm. In this recursive SIVIA-based algorithm, the
aim is to approximate with subpaving the set solutions [K]
that satisfy the inclusion eq.9.

The recursive SIVIA-based algorithm to compute the
output-feedback parameters is outlined in Table1. It requires
initial box [K0] that may contain the solution, the interval
state-space matrices, the desired region of eigenvalues, and
the required accuracy for the paving ε. Since the closed-
loop matrix is non-symmetric, the eigenvalues interval ap-
proximation are calculated by mean of Hlad́ık formula or the

vertex approach, whereas in the case of symmetric matrix
Rohn’s formula can be used [18], [19], [21]. The proposed
algorithm provides complete information about the ranges of
feedback gains including: inner (solution), outer (undefined),
and unfeasible (no solution) subpavings where all the sets
subpavings are initially empty. However, the robust gain matrix
K = [Ky Ki] (non-interval) can be chosen randomly from the
set solution [K] to be sure that this gains matrix will assign all
the closed-loop system eigenvalues inside the desired region
whatever the system matrices (A, B, C) are inside the interval
system (A, B, C).

TABLE I
THE PROPOSED RECURSIVE SIVIA-BASED ALGORITHM.

SIV IA(in: [A], [B], [C], [K] = [intialbox], [kin] =

�, [Kout] = �, [KUnfeasibl] = �, ε, Y = ΩDesiredragion

)
Step 1 Iteration i

- Calculate Aaug−cl([A], [B], [C], [K])

- Calculate eig([Aaug−cl])

Step 2 -If eig([Aaug−cl]) ⊆ Y Then [kin] = [kin] ∪ [K]

Go to step 6
Step 3 -If eig([Aaug−cl])∩ Y = � Then [kUnf ] = [kUnf ]∪ [K]

Go to step 6
Step 4 -If [K] < ε Then [kout] = [kout] ∪ [K] Go to step 6
Step 5 - Else bisect [K] and stack the two resulting boxes.
Step 6 -If the stack is not empty, then unstack into [K](i+ 1), increment i

and go to Step 1.
-Else End.

IV. MODELING OF PIEZOELECTRIC TUBE ACTUATOR

During the experimental process we focus on the control
of the manipulation force only on one axis (one degrees of
freedom: 1-DoF). We will note Ux the related applied voltage,
σx and Fm are the resulting deflection and the applied force to
the manipulated micro-object respectively in the x direction.
In order to inflect the tube along X-axis , we apply a voltage
on one electrode and an inverse sign voltage with the same
amplitude on the other electrode in the opposite side. In the
terminal of the piezoelectric tube, we have placed a small
cube with perpendicular and flat sides to be able to measure
the linear displacement of the tube deflections as depicted in
fig.1.

The relation between the Ux, σx and Fm can be expressed
by the following linear equation (10), whereas the actuator
nonlinearities, sensitivity to the ambient conditions as well as
the characteristics of the manipulated object will be approxi-
mated later by parametric uncertainties bounded by intervals
[1].

σx = (dpUx − sp.Fm).Υ (s) (10)

where sp and dp are the compliance of the actuator and the
piezoelectric constant, Υ (s) represents the dynamic part of the
actuator (with Υ (0) = 1).

The compliance sp of the actuator is identified experimen-
tally by applying a known constant force F by pushing the
force sensor toward the piezotube actuator along the x-axis
using a manual precise positioning table. Then, the compliance
of the actuator is calculated from the resulting deflection as
follow: sp = σx

F [1].



4

The dynamic of the manipulated micro-object can be rep-
resented by a second order model of spring-mass-damper
system, as shown in fig.1. And it can be expressed by the
following equation (11):

σx − σnc = s0.Fm.Ψ(s) (11)

where s0 = 1
ke

represents the micro-object compliance and
Ψ(s) is the dynamic part.

After replacing the deflection in (10) by that of (11), we
deduce the expression of the manipulation force:

Fm =
dp.Υ (s).Ux

s0.Ψ(s) + sp.Υ (s)
+

σnc
s0.Ψ(s) + sp.Υ (s)

(12)

Finally, to obtain the interval model of the piezoelectric
actuator that includes the nonlinearities and uncertainties of
the piezoelectric tube actuator, we describe each parameter
of Υ (s) by intervals [Υ (s)]. In micro/nano manipulation, the
control performances are affected by the manipulated objects
which result in a significant change in the behavior of the
actuator. However, it is not practical to identify the model and
to design the controller at each change of the manipulated
object. For this matter, we propose to use intervals to model
and to bound the compliance of the manipulated objects.
Thus: [s0] = [s−0 , s

+
0 ] Where s−0 represents the compliance

of the most rigid object while s+
0 refers to the most flexible

object. Furthermore, the dynamic of the manipulated object
is supposed to be quasi-static (i.e. Ψ(s) = 1) and its effects
are considered as system uncertainties and are supposed to be
belong the different sources of uncertainties interval model
of the actuator [Υ (s)]. This hypothesis will be verified in
the experimental results. Additionally, the compliance of the
actuator sp and the piezoelectric constant dp can be considered
as interval parameters. Finally, we get the following interval
model:

[Fm] =
[dp].[Υ (s)].Ux

[s0] + [sp].[Υ (s)]
+

σnc
[s0] + [sp].[Υ (s)]

(13)

In this experimental case, the compliance of the elastic
object and the the most rigid object are shown to be belong
the following interval: [so] = [1.93, 3.738]µm/mN [5].

In the later sections of this paper we will use a decision
mechanism to switch between the control on position into the
control on force when the micro object is in contact with the
actuator. Hereby, the actuator will be initially in contact with
the micro object when the decision mechanism switches to
the control on force (i.e. σnc = 0). Consequently, we have
the following linear transfer voltage-force when the contact is
established which is taken from eq.13:

[GUF ] =
Fm
Ux

=
[dp].[Υ (s)]

[s0] + [sp].[Υ (s)]
(14)

Notwithstanding, when the actuator is controlled on position
only when the micro object is not in contact (i.e. Fm ' 0), the
linear transfer function that links the input Ux and the output
σx (voltage-deflection) can be derived easily from eq.10:

[GUσ] =
σx
Ux

= [dp][Υ (s)] (15)

Fig. 1. Structure and operation of the piezoelectric microgripper based on
two piezoelectric tube actuators.

V. AUTOMATED CONTROL STRUCTURE

In the previous works that dealt with automated microgrip-
per, one cantilever actuator is controlled on force while the
other is controlled on position in order to perform one axis
(1-dof) manipulation tasks. In this paper we keep the same
idea however to make the pick-and-place task fully automated
with less human intervention, we propose a new strategy
based on controlling the second cantilever both on position
and on force and use a decision mechanism to automatically
switch between them. The main focus here is to control
the piezotube actuator with a robust deflection technique to
approach the micro-object. Then once the actuator is in contact
with the micro-object the decision mechanism automatically
switches the control on force. The decision mechanism is taken
based on the estimated value of the manipulation force with
the help of a predefined threshold calculated experimentally.
Primary the decision mechanism is considered as a predefined
threshold decision-making, however, in the upcoming work
we will focus on using an intelligent method to combine the
force/position controller with a self-adaptive threshold. The
overall structure of the proposed automated control strategy
is depicted in fig.2. Each block will be detailed in the next
subsections.

Fig. 2. Overall structure of the proposed automated control strategy.

A. Design of position controller

In this subsection, we will employ the robust output-
feedback design and the interval model of the microgripper
system to find the robust feedback gains that permit to control
the piezoelectric microgripper on position with maintaining
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the desired performance under system uncertainties. Therefore,
the interval voltage-deflection model proposed in the previous
section will be used. Foremost, to characterize the dynamics
GUσ parameters, we apply a step voltage Ux of amplitude
200V and capture its corresponding σx deflection. To identify
the dynamic part GUσ of the actuator, we use System Iden-
tification MatlabToolbox. Particularly, a second order model
has been chosen because it is largely sufficient to represent
the dynamics of the piezoelectric tube.

Finally, to obtain the interval model of the piezoelectric
actuator that includes the nonlinearities and uncertainties of
the piezoelectric actuator as explained previously, we propose
to consider each parameter of dynamics Υ (s) as center and
adding a radius of 10% in order to have an interval parameter.
These 10% are a good compromise between finding a width
of uncertainty as large as possible and the possibility to have
a solution of the feedback controller [5]. We therefore obtain:

[GUσ](s) =
[b0] s2 + [b1] s+ [b2]

s2 + [a1] s+ [a2]
(16)

where

[b0] = 0; [a1] = [3.6033, 4.4041] ∗ 1.0e+ 07;
[b1] = [4.1424, 5.0630] ∗ 1.0e+ 09; [a2] = [1.6147, 1.9735] ∗ 1.0e+ 10;
[b2] = [1.4045, 1.7166] ∗ 1.0e+ 13;

The above interval transfer function model of the piezoelec-
tric tube actuator can be expressed by the flowing state-space
model in control canonical form:{

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(17)

A =

[
0 1
−[a2] −[a1]

]
; B =

[
0
1

]
; D = [b0]

C =
[

[b2]− [a2][b0] [b1]− [a1][b0]
]

The use of the interval model of the piezoelectric tube
allows us to find a robust output-feedback controller which
satisfies the desired performances with the help of recur-
sive SIVIA-besed algorithm described in Table.1. Indeed, in
micro/nano manipulation and assembly applications, rapidity
is highly required and overshoot is extremely undesirable
because it may cause micro/nano objects damage. Therefore,
the following desired performances are adopted: negligible
overshoot (1%) and a settling time Ts ≤ 40ms, which
corresponds to ξ1 = η.ωn = 74.9, where η and ωn are the
damping ratio and natural frequency respectively.

To find the set solution of the robust gain matrix [K] (with
[K] = [[Ky] [Ki]]), we employ the recursive SIVIA-based
algorithm (Table.1). We select an initial box [Ky] × [Ki] =
[−5 × 101, 5 × 101] × [−1×103, 1×103] and an accuracy of
paving ε= 0.1. The obtained results are depicted in fig.3.
The red boxes refer to the inner subpavings [Kin] (the set
solutions [Ky] and [Ki] that satisfy the inclusion eq.9). The
white boxes refer to the set of gain matrix [KUnfeasible] where
the inclusion condition (eq.9) is not satisfied. The yellow boxes
corresponds to [Kout] where no decision on the inclusion
(eq.9) is taken.

Furthermore to test the obtained solutions we arbitrarily
select the controller parameters Ky = −1 and Ki = 700

-8 -6 -4 -2 0 2

600

620

640

660

680

700

[Kin]

[Kout]

[K Unfeasible]

Fig. 3. Resulting subpaving [Ky ] and [Ki] with : red ( solution boxes), white
(no solution), yellow (no decision).

from the solution boxes fig.3. The simulation of the closed-
loop system step response is depicted in fig.4. In the figure,
three simulation results are performed using three different
values of the system matrices (A,B,C) inside the interval
system([A], [B], [C]), where the sup(), inf(), and mid() refer
to the superior, inferior, and middle values of the interval
matrices. Actually it can be seen clearly that all of the
step responses of the closed-loop system satisfy the desire
performance with negligible overshoot (1%) and with a settling
time Ts ≤ 40ms.

Fig. 4. Step response of the voltage-deflection system (Simulation using
Matlab).

B. Design of force controller

In the force control design, we have used the robust output-
feedback design exactly in the same way than the previous
subsection of position controller design with employing the
voltage-force interval model [GUF ]. However, due to the lack
of a convenient and integrable force sensor in micro-nano
world, we propose to use the Unknown Input Observer (UIO),
introduced by the authors in [23], to estimate the manipulated
force. The observer is based on considering the force as an
unknown input disturbance and estimating this latter by the
inverse dynamics. The convergence and the performance of
the estimated force has already been illustrated and a set
of experimental results have confirmed the efficiency of the
observer [23]. The inputs of the observer are the input voltage
Ux and the measured deflection σx, as depicted in fig.2.

The obtained set solutions that correspond to the parameters
[Ky] × [Ki] are shown in fig.5. We select arbitrary from the
solution boxes fig.5 the controller parameters Ky = −0.1 ×
10−3 and Ki = 0.3.
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Fig. 5. Resulting subpaving of [Ky ]and [Ki] with : red (solution boxes),
yellow (no decision).

The simulated step response for the closed-loop system
using three different values of the system matrices (A,B,C)
inside the interval system([A], [B], [C]) are depicted in fig.6.
As noticed previously all of the step responses of the closed-
loop system satisfy the desired performances with negligible
overshoot (1%) and with a settling time Ts ≤ 20ms.
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Fig. 6. Step response of the voltage-force system (Simulation using Matlab).

VI. EXPERIMENTS

The previous section was devoted to design the robust
output-feedback controllers as well as the UIO observer. How-
ever, only the robust gains of the output feedback controllers
for both force and position are calculated and tested in simu-
lation and the observer was not. In this section, the designed
controllers and the UIO observer are implemented separately
and tested experimentally, then the proposed automated robust
force/position control structure is implemented and validated
experimentally.

The experimental setup is represented in fig.7. It is com-
posed of a piezoelectric tube actuator (PT230.94), an opti-
cal displacement sensors (LC2420 from Keyence company),
a voltage amplifier (up to ±200V ), a force sensor from
femtotools-company (FT-S10000) and a computer with Mat-
lab/Simulink software. The piezoelectric tube is made of lead-
zirconate-titanate (PZT) material coated by one inner electrode
(in silver) that serves as ground and four external electrodes
(in copper-nickel alloy) for the electrical potentials with a size
of 30 mm × 3.2 mm × 2.2 mm (Length × outer dimension ×
inner dimension). The actuator and the sensors are connected
to the computer through a dSPACE-1103 board. In addition in
order to regulate the ambient temperature, we use a resistance
heating wire around the piezoelectric actuator as shown in the
fig.7 and a precision reference thermometer (Eurolec RT161).

Fuerthermore, a micro scale camera (DigMicro) was used to
visualize the deflection of the piezoelectric tube.

Fig. 7. Presentation of the experimental setup.

A. Validation of the position control

The goal of this subsection is to validate experimentally
the control on position of the piezoelectric tube actuator using
the robust output-feedback design. Fig.8 represents the exper-
imental results of the voltage-deflection closed-loop response.
The goal of the experimental results is to to demonstrate that
the closed-loop system satisfies the desired performance under
the actuator nonlinearities and its sensitivity to the ambient
conditions.

fl

Fig. 8. Step response of the position control system (experimental test).

B. Validation of the force control

The goal of this subsection is to validate experimentally the
control on force of the piezoelectric tube actuator using the
robust output-feedback design. Actually, in order to validate
the proposed control schema, instead of manipulating a micro-
object, we manipulate the cantilever of the force sensor as
shown in fig.7. Fig.9 represents the experimental results of
the voltage-force closed-loop response. However the results
demonstrate that the closed-loop system satisfies the desired
performance under system uncertainties.

C. COMPLETE AUTOMATED TASK

The objective if this subsection is to verify the effectiveness
of the control strategy to achieve the automated pick-and-
place task using a piezoelectric tube actuator. The experimen-
tal results are presented in Fig.10. This figure demonstrates
that the overall structure of the proposed automated control
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Fig. 9. Step response of the force control system (experimental test).

strategy has been successfully performed. Indeed, we can see
clearly that the piezotube actuator is controlled on position to
approach the object, and once the actuator is in contact with
the object the decision mechanism automatically switches to
control on force. Furthermore, the robustness of the outputs-
feedback control has also been demonstrated though exper-
iments that consist in maintaining the desired performance
under system uncertainties and under external disturbances.
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Fig. 10. Experimental results of an automated pick task demonstrates the
switch between control on position into control on force.

VII. CONCLUSIONS

In this paper, interval modeling, robust control and automa-
tion of a piezoelectric microgripper based on two piezoelectric
tube actuators are investigated. Indeed, a simple algorithm
to synthesize the robust force/position controllers, with a
classical output-feedback design, to control the piezoelectric
microgripper under system uncertainties is introduced. The
algorithm, called recursive SIVIA-based algorithm, is based on
interval eigenvalue computations and set inversion techniques.
Simulation validation and experimental applications were car-
ried out to control on force and on position a piezoelectric
tube actuator working in SISO (Single Input Single output)
case which demonstrated the efficiency of the proposed control
strategy. Furthermore, a hybrid control structure is proposed

and validated experimentally for an automated grasping task.
These results are promising for multi-axes micro/nano appli-
cations.
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